Evaluate
\frac{3961}{210}\approx 18.861904762
Factor
\frac{17 \cdot 233}{2 \cdot 3 \cdot 5 \cdot 7} = 18\frac{181}{210} = 18.86190476190476
Share
Copied to clipboard
2+\frac{7}{6}-\frac{4}{7}-\left(\frac{2}{6}+\frac{4}{10}-17\right)
Divide 4 by 2 to get 2.
\frac{12}{6}+\frac{7}{6}-\frac{4}{7}-\left(\frac{2}{6}+\frac{4}{10}-17\right)
Convert 2 to fraction \frac{12}{6}.
\frac{12+7}{6}-\frac{4}{7}-\left(\frac{2}{6}+\frac{4}{10}-17\right)
Since \frac{12}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
\frac{19}{6}-\frac{4}{7}-\left(\frac{2}{6}+\frac{4}{10}-17\right)
Add 12 and 7 to get 19.
\frac{133}{42}-\frac{24}{42}-\left(\frac{2}{6}+\frac{4}{10}-17\right)
Least common multiple of 6 and 7 is 42. Convert \frac{19}{6} and \frac{4}{7} to fractions with denominator 42.
\frac{133-24}{42}-\left(\frac{2}{6}+\frac{4}{10}-17\right)
Since \frac{133}{42} and \frac{24}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{109}{42}-\left(\frac{2}{6}+\frac{4}{10}-17\right)
Subtract 24 from 133 to get 109.
\frac{109}{42}-\left(\frac{1}{3}+\frac{4}{10}-17\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{109}{42}-\left(\frac{1}{3}+\frac{2}{5}-17\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{109}{42}-\left(\frac{5}{15}+\frac{6}{15}-17\right)
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{2}{5} to fractions with denominator 15.
\frac{109}{42}-\left(\frac{5+6}{15}-17\right)
Since \frac{5}{15} and \frac{6}{15} have the same denominator, add them by adding their numerators.
\frac{109}{42}-\left(\frac{11}{15}-17\right)
Add 5 and 6 to get 11.
\frac{109}{42}-\left(\frac{11}{15}-\frac{255}{15}\right)
Convert 17 to fraction \frac{255}{15}.
\frac{109}{42}-\frac{11-255}{15}
Since \frac{11}{15} and \frac{255}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{109}{42}-\left(-\frac{244}{15}\right)
Subtract 255 from 11 to get -244.
\frac{109}{42}+\frac{244}{15}
The opposite of -\frac{244}{15} is \frac{244}{15}.
\frac{545}{210}+\frac{3416}{210}
Least common multiple of 42 and 15 is 210. Convert \frac{109}{42} and \frac{244}{15} to fractions with denominator 210.
\frac{545+3416}{210}
Since \frac{545}{210} and \frac{3416}{210} have the same denominator, add them by adding their numerators.
\frac{3961}{210}
Add 545 and 3416 to get 3961.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}