Evaluate
\frac{44}{9}\approx 4.888888889
Factor
\frac{2 ^ {2} \cdot 11}{3 ^ {2}} = 4\frac{8}{9} = 4.888888888888889
Share
Copied to clipboard
\frac{\left(4\sqrt{2}\right)^{2}}{3^{2}}+4-\sqrt{2}\times \frac{4\sqrt{2}}{3}
To raise \frac{4\sqrt{2}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4\sqrt{2}\right)^{2}}{3^{2}}+\frac{4\times 3^{2}}{3^{2}}-\sqrt{2}\times \frac{4\sqrt{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{3^{2}}{3^{2}}.
\frac{\left(4\sqrt{2}\right)^{2}+4\times 3^{2}}{3^{2}}-\sqrt{2}\times \frac{4\sqrt{2}}{3}
Since \frac{\left(4\sqrt{2}\right)^{2}}{3^{2}} and \frac{4\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(4\sqrt{2}\right)^{2}+4\times 3^{2}}{3^{2}}-\frac{\sqrt{2}\times 4\sqrt{2}}{3}
Express \sqrt{2}\times \frac{4\sqrt{2}}{3} as a single fraction.
\frac{\left(4\sqrt{2}\right)^{2}+4\times 3^{2}}{3^{2}}-\frac{2\times 4}{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\left(4\sqrt{2}\right)^{2}+4\times 3^{2}}{3^{2}}-\frac{8}{3}
Multiply 2 and 4 to get 8.
\frac{\left(4\sqrt{2}\right)^{2}+4\times 3^{2}}{9}-\frac{8\times 3}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{8}{3} times \frac{3}{3}.
\frac{\left(4\sqrt{2}\right)^{2}+4\times 3^{2}-8\times 3}{9}
Since \frac{\left(4\sqrt{2}\right)^{2}+4\times 3^{2}}{9} and \frac{8\times 3}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{4^{2}\left(\sqrt{2}\right)^{2}+4\times 3^{2}}{3^{2}}-\frac{8}{3}
Expand \left(4\sqrt{2}\right)^{2}.
\frac{16\left(\sqrt{2}\right)^{2}+4\times 3^{2}}{3^{2}}-\frac{8}{3}
Calculate 4 to the power of 2 and get 16.
\frac{16\times 2+4\times 3^{2}}{3^{2}}-\frac{8}{3}
The square of \sqrt{2} is 2.
\frac{32+4\times 3^{2}}{3^{2}}-\frac{8}{3}
Multiply 16 and 2 to get 32.
\frac{32+4\times 9}{3^{2}}-\frac{8}{3}
Calculate 3 to the power of 2 and get 9.
\frac{32+36}{3^{2}}-\frac{8}{3}
Multiply 4 and 9 to get 36.
\frac{68}{3^{2}}-\frac{8}{3}
Add 32 and 36 to get 68.
\frac{68}{9}-\frac{8}{3}
Calculate 3 to the power of 2 and get 9.
\frac{44}{9}
Subtract \frac{8}{3} from \frac{68}{9} to get \frac{44}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}