Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-1+4i}{-1}-\frac{2+3i}{1+2i}
Multiply both numerator and denominator of \frac{4+i}{i} by imaginary unit i.
1-4i-\frac{2+3i}{1+2i}
Divide -1+4i by -1 to get 1-4i.
1-4i-\frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
Multiply both numerator and denominator of \frac{2+3i}{1+2i} by the complex conjugate of the denominator, 1-2i.
1-4i-\frac{8-i}{5}
Do the multiplications in \frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
1-4i+\left(-\frac{8}{5}+\frac{1}{5}i\right)
Divide 8-i by 5 to get \frac{8}{5}-\frac{1}{5}i.
-\frac{3}{5}-\frac{19}{5}i
Add 1-4i and -\frac{8}{5}+\frac{1}{5}i to get -\frac{3}{5}-\frac{19}{5}i.
Re(\frac{-1+4i}{-1}-\frac{2+3i}{1+2i})
Multiply both numerator and denominator of \frac{4+i}{i} by imaginary unit i.
Re(1-4i-\frac{2+3i}{1+2i})
Divide -1+4i by -1 to get 1-4i.
Re(1-4i-\frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
Multiply both numerator and denominator of \frac{2+3i}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(1-4i-\frac{8-i}{5})
Do the multiplications in \frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
Re(1-4i+\left(-\frac{8}{5}+\frac{1}{5}i\right))
Divide 8-i by 5 to get \frac{8}{5}-\frac{1}{5}i.
Re(-\frac{3}{5}-\frac{19}{5}i)
Add 1-4i and -\frac{8}{5}+\frac{1}{5}i to get -\frac{3}{5}-\frac{19}{5}i.
-\frac{3}{5}
The real part of -\frac{3}{5}-\frac{19}{5}i is -\frac{3}{5}.