Evaluate
-\frac{3}{5}-\frac{19}{5}i=-0.6-3.8i
Real Part
-\frac{3}{5} = -0.6
Share
Copied to clipboard
\frac{-1+4i}{-1}-\frac{2+3i}{1+2i}
Multiply both numerator and denominator of \frac{4+i}{i} by imaginary unit i.
1-4i-\frac{2+3i}{1+2i}
Divide -1+4i by -1 to get 1-4i.
1-4i-\frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
Multiply both numerator and denominator of \frac{2+3i}{1+2i} by the complex conjugate of the denominator, 1-2i.
1-4i-\frac{8-i}{5}
Do the multiplications in \frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
1-4i+\left(-\frac{8}{5}+\frac{1}{5}i\right)
Divide 8-i by 5 to get \frac{8}{5}-\frac{1}{5}i.
-\frac{3}{5}-\frac{19}{5}i
Add 1-4i and -\frac{8}{5}+\frac{1}{5}i to get -\frac{3}{5}-\frac{19}{5}i.
Re(\frac{-1+4i}{-1}-\frac{2+3i}{1+2i})
Multiply both numerator and denominator of \frac{4+i}{i} by imaginary unit i.
Re(1-4i-\frac{2+3i}{1+2i})
Divide -1+4i by -1 to get 1-4i.
Re(1-4i-\frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
Multiply both numerator and denominator of \frac{2+3i}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(1-4i-\frac{8-i}{5})
Do the multiplications in \frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
Re(1-4i+\left(-\frac{8}{5}+\frac{1}{5}i\right))
Divide 8-i by 5 to get \frac{8}{5}-\frac{1}{5}i.
Re(-\frac{3}{5}-\frac{19}{5}i)
Add 1-4i and -\frac{8}{5}+\frac{1}{5}i to get -\frac{3}{5}-\frac{19}{5}i.
-\frac{3}{5}
The real part of -\frac{3}{5}-\frac{19}{5}i is -\frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}