Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(4+3i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}\right)^{10}
Multiply both numerator and denominator of \frac{4+3i}{3-4i} by the complex conjugate of the denominator, 3+4i.
\left(\frac{25i}{25}\right)^{10}
Do the multiplications in \frac{\left(4+3i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
i^{10}
Divide 25i by 25 to get i.
-1
Calculate i to the power of 10 and get -1.
Re(\left(\frac{\left(4+3i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}\right)^{10})
Multiply both numerator and denominator of \frac{4+3i}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(\left(\frac{25i}{25}\right)^{10})
Do the multiplications in \frac{\left(4+3i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
Re(i^{10})
Divide 25i by 25 to get i.
Re(-1)
Calculate i to the power of 10 and get -1.
-1
The real part of -1 is -1.