Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2+\sqrt{3}\right)^{2}+\frac{4+2\sqrt{3}}{2}\times \frac{4-2\sqrt{3}}{2}-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}+\frac{4+2\sqrt{3}}{2}\times \frac{4-2\sqrt{3}}{2}-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3+\frac{4+2\sqrt{3}}{2}\times \frac{4-2\sqrt{3}}{2}-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+\frac{4+2\sqrt{3}}{2}\times \frac{4-2\sqrt{3}}{2}-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}+\left(2+\sqrt{3}\right)\times \frac{4-2\sqrt{3}}{2}-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
7+4\sqrt{3}+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Divide each term of 4-2\sqrt{3} by 2 to get 2-\sqrt{3}.
7+4\sqrt{3}+4-\left(\sqrt{3}\right)^{2}-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
7+4\sqrt{3}+4-3-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+1-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Subtract 3 from 4 to get 1.
8+4\sqrt{3}-\left(\frac{4-2\sqrt{3}}{2}\right)^{2}
Add 7 and 1 to get 8.
8+4\sqrt{3}-\left(2-\sqrt{3}\right)^{2}
Divide each term of 4-2\sqrt{3} by 2 to get 2-\sqrt{3}.
8+4\sqrt{3}-\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
8+4\sqrt{3}-\left(4-4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
8+4\sqrt{3}-\left(7-4\sqrt{3}\right)
Add 4 and 3 to get 7.
8+4\sqrt{3}-7+4\sqrt{3}
To find the opposite of 7-4\sqrt{3}, find the opposite of each term.
1+4\sqrt{3}+4\sqrt{3}
Subtract 7 from 8 to get 1.
1+8\sqrt{3}
Combine 4\sqrt{3} and 4\sqrt{3} to get 8\sqrt{3}.