Solve for y
y=\frac{7\sqrt{3}}{2}-1\approx 5.062177826
y=-\frac{7\sqrt{3}}{2}-1\approx -7.062177826
Graph
Share
Copied to clipboard
14\left(\left(\frac{31+24y}{14}\right)^{2}+y^{2}-8\times \frac{31+24y}{14}\right)+196y=1792
Multiply both sides of the equation by 14.
14\left(\frac{\left(31+24y\right)^{2}}{14^{2}}+y^{2}-8\times \frac{31+24y}{14}\right)+196y=1792
To raise \frac{31+24y}{14} to a power, raise both numerator and denominator to the power and then divide.
14\left(\frac{\left(31+24y\right)^{2}}{14^{2}}+\frac{y^{2}\times 14^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{14^{2}}{14^{2}}.
14\left(\frac{\left(31+24y\right)^{2}+y^{2}\times 14^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
Since \frac{\left(31+24y\right)^{2}}{14^{2}} and \frac{y^{2}\times 14^{2}}{14^{2}} have the same denominator, add them by adding their numerators.
14\left(\frac{961+1488y+576y^{2}+196y^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
Do the multiplications in \left(31+24y\right)^{2}+y^{2}\times 14^{2}.
14\left(\frac{961+1488y+772y^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
Combine like terms in 961+1488y+576y^{2}+196y^{2}.
14\left(\frac{961+1488y+772y^{2}}{14^{2}}-\frac{8\left(31+24y\right)}{14}\right)+196y=1792
Express 8\times \frac{31+24y}{14} as a single fraction.
14\left(\frac{961+1488y+772y^{2}}{14^{2}}-\frac{248+192y}{14}\right)+196y=1792
Use the distributive property to multiply 8 by 31+24y.
14\left(\frac{961+1488y+772y^{2}}{196}-\frac{14\left(248+192y\right)}{196}\right)+196y=1792
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14^{2} and 14 is 196. Multiply \frac{248+192y}{14} times \frac{14}{14}.
14\times \frac{961+1488y+772y^{2}-14\left(248+192y\right)}{196}+196y=1792
Since \frac{961+1488y+772y^{2}}{196} and \frac{14\left(248+192y\right)}{196} have the same denominator, subtract them by subtracting their numerators.
14\times \frac{961+1488y+772y^{2}-3472-2688y}{196}+196y=1792
Do the multiplications in 961+1488y+772y^{2}-14\left(248+192y\right).
14\times \frac{-2511-1200y+772y^{2}}{196}+196y=1792
Combine like terms in 961+1488y+772y^{2}-3472-2688y.
\frac{-2511-1200y+772y^{2}}{14}+196y=1792
Cancel out 196, the greatest common factor in 14 and 196.
-\frac{2511}{14}-\frac{600}{7}y+\frac{386}{7}y^{2}+196y=1792
Divide each term of -2511-1200y+772y^{2} by 14 to get -\frac{2511}{14}-\frac{600}{7}y+\frac{386}{7}y^{2}.
-\frac{2511}{14}+\frac{772}{7}y+\frac{386}{7}y^{2}=1792
Combine -\frac{600}{7}y and 196y to get \frac{772}{7}y.
-\frac{2511}{14}+\frac{772}{7}y+\frac{386}{7}y^{2}-1792=0
Subtract 1792 from both sides.
-\frac{27599}{14}+\frac{772}{7}y+\frac{386}{7}y^{2}=0
Subtract 1792 from -\frac{2511}{14} to get -\frac{27599}{14}.
\frac{386}{7}y^{2}+\frac{772}{7}y-\frac{27599}{14}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\frac{772}{7}±\sqrt{\left(\frac{772}{7}\right)^{2}-4\times \frac{386}{7}\left(-\frac{27599}{14}\right)}}{2\times \frac{386}{7}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{386}{7} for a, \frac{772}{7} for b, and -\frac{27599}{14} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{772}{7}±\sqrt{\frac{595984}{49}-4\times \frac{386}{7}\left(-\frac{27599}{14}\right)}}{2\times \frac{386}{7}}
Square \frac{772}{7} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\frac{772}{7}±\sqrt{\frac{595984}{49}-\frac{1544}{7}\left(-\frac{27599}{14}\right)}}{2\times \frac{386}{7}}
Multiply -4 times \frac{386}{7}.
y=\frac{-\frac{772}{7}±\sqrt{\frac{595984+21306428}{49}}}{2\times \frac{386}{7}}
Multiply -\frac{1544}{7} times -\frac{27599}{14} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{772}{7}±\sqrt{446988}}{2\times \frac{386}{7}}
Add \frac{595984}{49} to \frac{21306428}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{772}{7}±386\sqrt{3}}{2\times \frac{386}{7}}
Take the square root of 446988.
y=\frac{-\frac{772}{7}±386\sqrt{3}}{\frac{772}{7}}
Multiply 2 times \frac{386}{7}.
y=\frac{386\sqrt{3}-\frac{772}{7}}{\frac{772}{7}}
Now solve the equation y=\frac{-\frac{772}{7}±386\sqrt{3}}{\frac{772}{7}} when ± is plus. Add -\frac{772}{7} to 386\sqrt{3}.
y=\frac{7\sqrt{3}}{2}-1
Divide -\frac{772}{7}+386\sqrt{3} by \frac{772}{7} by multiplying -\frac{772}{7}+386\sqrt{3} by the reciprocal of \frac{772}{7}.
y=\frac{-386\sqrt{3}-\frac{772}{7}}{\frac{772}{7}}
Now solve the equation y=\frac{-\frac{772}{7}±386\sqrt{3}}{\frac{772}{7}} when ± is minus. Subtract 386\sqrt{3} from -\frac{772}{7}.
y=-\frac{7\sqrt{3}}{2}-1
Divide -\frac{772}{7}-386\sqrt{3} by \frac{772}{7} by multiplying -\frac{772}{7}-386\sqrt{3} by the reciprocal of \frac{772}{7}.
y=\frac{7\sqrt{3}}{2}-1 y=-\frac{7\sqrt{3}}{2}-1
The equation is now solved.
14\left(\left(\frac{31+24y}{14}\right)^{2}+y^{2}-8\times \frac{31+24y}{14}\right)+196y=1792
Multiply both sides of the equation by 14.
14\left(\frac{\left(31+24y\right)^{2}}{14^{2}}+y^{2}-8\times \frac{31+24y}{14}\right)+196y=1792
To raise \frac{31+24y}{14} to a power, raise both numerator and denominator to the power and then divide.
14\left(\frac{\left(31+24y\right)^{2}}{14^{2}}+\frac{y^{2}\times 14^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{14^{2}}{14^{2}}.
14\left(\frac{\left(31+24y\right)^{2}+y^{2}\times 14^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
Since \frac{\left(31+24y\right)^{2}}{14^{2}} and \frac{y^{2}\times 14^{2}}{14^{2}} have the same denominator, add them by adding their numerators.
14\left(\frac{961+1488y+576y^{2}+196y^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
Do the multiplications in \left(31+24y\right)^{2}+y^{2}\times 14^{2}.
14\left(\frac{961+1488y+772y^{2}}{14^{2}}-8\times \frac{31+24y}{14}\right)+196y=1792
Combine like terms in 961+1488y+576y^{2}+196y^{2}.
14\left(\frac{961+1488y+772y^{2}}{14^{2}}-\frac{8\left(31+24y\right)}{14}\right)+196y=1792
Express 8\times \frac{31+24y}{14} as a single fraction.
14\left(\frac{961+1488y+772y^{2}}{14^{2}}-\frac{248+192y}{14}\right)+196y=1792
Use the distributive property to multiply 8 by 31+24y.
14\left(\frac{961+1488y+772y^{2}}{196}-\frac{14\left(248+192y\right)}{196}\right)+196y=1792
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14^{2} and 14 is 196. Multiply \frac{248+192y}{14} times \frac{14}{14}.
14\times \frac{961+1488y+772y^{2}-14\left(248+192y\right)}{196}+196y=1792
Since \frac{961+1488y+772y^{2}}{196} and \frac{14\left(248+192y\right)}{196} have the same denominator, subtract them by subtracting their numerators.
14\times \frac{961+1488y+772y^{2}-3472-2688y}{196}+196y=1792
Do the multiplications in 961+1488y+772y^{2}-14\left(248+192y\right).
14\times \frac{-2511-1200y+772y^{2}}{196}+196y=1792
Combine like terms in 961+1488y+772y^{2}-3472-2688y.
\frac{-2511-1200y+772y^{2}}{14}+196y=1792
Cancel out 196, the greatest common factor in 14 and 196.
-\frac{2511}{14}-\frac{600}{7}y+\frac{386}{7}y^{2}+196y=1792
Divide each term of -2511-1200y+772y^{2} by 14 to get -\frac{2511}{14}-\frac{600}{7}y+\frac{386}{7}y^{2}.
-\frac{2511}{14}+\frac{772}{7}y+\frac{386}{7}y^{2}=1792
Combine -\frac{600}{7}y and 196y to get \frac{772}{7}y.
\frac{772}{7}y+\frac{386}{7}y^{2}=1792+\frac{2511}{14}
Add \frac{2511}{14} to both sides.
\frac{772}{7}y+\frac{386}{7}y^{2}=\frac{27599}{14}
Add 1792 and \frac{2511}{14} to get \frac{27599}{14}.
\frac{386}{7}y^{2}+\frac{772}{7}y=\frac{27599}{14}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{386}{7}y^{2}+\frac{772}{7}y}{\frac{386}{7}}=\frac{\frac{27599}{14}}{\frac{386}{7}}
Divide both sides of the equation by \frac{386}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\frac{\frac{772}{7}}{\frac{386}{7}}y=\frac{\frac{27599}{14}}{\frac{386}{7}}
Dividing by \frac{386}{7} undoes the multiplication by \frac{386}{7}.
y^{2}+2y=\frac{\frac{27599}{14}}{\frac{386}{7}}
Divide \frac{772}{7} by \frac{386}{7} by multiplying \frac{772}{7} by the reciprocal of \frac{386}{7}.
y^{2}+2y=\frac{143}{4}
Divide \frac{27599}{14} by \frac{386}{7} by multiplying \frac{27599}{14} by the reciprocal of \frac{386}{7}.
y^{2}+2y+1^{2}=\frac{143}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+2y+1=\frac{143}{4}+1
Square 1.
y^{2}+2y+1=\frac{147}{4}
Add \frac{143}{4} to 1.
\left(y+1\right)^{2}=\frac{147}{4}
Factor y^{2}+2y+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+1\right)^{2}}=\sqrt{\frac{147}{4}}
Take the square root of both sides of the equation.
y+1=\frac{7\sqrt{3}}{2} y+1=-\frac{7\sqrt{3}}{2}
Simplify.
y=\frac{7\sqrt{3}}{2}-1 y=-\frac{7\sqrt{3}}{2}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}