Evaluate
\frac{2x^{11}}{y^{6}}
Differentiate w.r.t. x
\frac{22x^{10}}{y^{6}}
Share
Copied to clipboard
\left(\frac{x^{-7}y^{-3}}{2y^{-9}x^{4}}\right)^{-1}
Cancel out 3 in both numerator and denominator.
\left(\frac{x^{-7}y^{6}}{2x^{4}}\right)^{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{y^{6}}{2x^{11}}\right)^{-1}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(y^{6}\right)^{-1}}{\left(2x^{11}\right)^{-1}}
To raise \frac{y^{6}}{2x^{11}} to a power, raise both numerator and denominator to the power and then divide.
\frac{y^{-6}}{\left(2x^{11}\right)^{-1}}
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{y^{-6}}{2^{-1}\left(x^{11}\right)^{-1}}
Expand \left(2x^{11}\right)^{-1}.
\frac{y^{-6}}{2^{-1}x^{-11}}
To raise a power to another power, multiply the exponents. Multiply 11 and -1 to get -11.
\frac{y^{-6}}{\frac{1}{2}x^{-11}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}