Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3}w^{-1}
To raise \frac{3uv^{-4}}{w^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1}
Express \frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{\left(w^{-2}\right)^{3}}
Express \frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{w^{-6}}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
\left(3v^{-4}u\right)^{3}v^{3}w^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
3^{3}\left(v^{-4}\right)^{3}u^{3}v^{3}w^{5}
Expand \left(3v^{-4}u\right)^{3}.
3^{3}v^{-12}u^{3}v^{3}w^{5}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
27v^{-12}u^{3}v^{3}w^{5}
Calculate 3 to the power of 3 and get 27.
27v^{-9}u^{3}w^{5}
To multiply powers of the same base, add their exponents. Add -12 and 3 to get -9.
\frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3}w^{-1}
To raise \frac{3uv^{-4}}{w^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1}
Express \frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{\left(w^{-2}\right)^{3}}
Express \frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{w^{-6}}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
\left(3v^{-4}u\right)^{3}v^{3}w^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
3^{3}\left(v^{-4}\right)^{3}u^{3}v^{3}w^{5}
Expand \left(3v^{-4}u\right)^{3}.
3^{3}v^{-12}u^{3}v^{3}w^{5}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
27v^{-12}u^{3}v^{3}w^{5}
Calculate 3 to the power of 3 and get 27.
27v^{-9}u^{3}w^{5}
To multiply powers of the same base, add their exponents. Add -12 and 3 to get -9.