Evaluate
\frac{27u^{3}w^{5}}{v^{9}}
Expand
\frac{27u^{3}w^{5}}{v^{9}}
Share
Copied to clipboard
\frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3}w^{-1}
To raise \frac{3uv^{-4}}{w^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1}
Express \frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{\left(w^{-2}\right)^{3}}
Express \frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{w^{-6}}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
\left(3v^{-4}u\right)^{3}v^{3}w^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
3^{3}\left(v^{-4}\right)^{3}u^{3}v^{3}w^{5}
Expand \left(3v^{-4}u\right)^{3}.
3^{3}v^{-12}u^{3}v^{3}w^{5}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
27v^{-12}u^{3}v^{3}w^{5}
Calculate 3 to the power of 3 and get 27.
27v^{-9}u^{3}w^{5}
To multiply powers of the same base, add their exponents. Add -12 and 3 to get -9.
\frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3}w^{-1}
To raise \frac{3uv^{-4}}{w^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1}
Express \frac{\left(3uv^{-4}\right)^{3}}{\left(w^{-2}\right)^{3}}v^{3} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{\left(w^{-2}\right)^{3}}
Express \frac{\left(3uv^{-4}\right)^{3}v^{3}}{\left(w^{-2}\right)^{3}}w^{-1} as a single fraction.
\frac{\left(3uv^{-4}\right)^{3}v^{3}w^{-1}}{w^{-6}}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
\left(3v^{-4}u\right)^{3}v^{3}w^{5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
3^{3}\left(v^{-4}\right)^{3}u^{3}v^{3}w^{5}
Expand \left(3v^{-4}u\right)^{3}.
3^{3}v^{-12}u^{3}v^{3}w^{5}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
27v^{-12}u^{3}v^{3}w^{5}
Calculate 3 to the power of 3 and get 27.
27v^{-9}u^{3}w^{5}
To multiply powers of the same base, add their exponents. Add -12 and 3 to get -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}