Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}\right)\times \frac{a^{2}-1}{a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a+1 is \left(a-1\right)\left(a+1\right). Multiply \frac{3a}{a-1} times \frac{a+1}{a+1}. Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{3a\left(a+1\right)-a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}\times \frac{a^{2}-1}{a}
Since \frac{3a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}+3a-a^{2}+a}{\left(a-1\right)\left(a+1\right)}\times \frac{a^{2}-1}{a}
Do the multiplications in 3a\left(a+1\right)-a\left(a-1\right).
\frac{2a^{2}+4a}{\left(a-1\right)\left(a+1\right)}\times \frac{a^{2}-1}{a}
Combine like terms in 3a^{2}+3a-a^{2}+a.
\frac{\left(2a^{2}+4a\right)\left(a^{2}-1\right)}{\left(a-1\right)\left(a+1\right)a}
Multiply \frac{2a^{2}+4a}{\left(a-1\right)\left(a+1\right)} times \frac{a^{2}-1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{2a\left(a-1\right)\left(a+1\right)\left(a+2\right)}{a\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
2\left(a+2\right)
Cancel out a\left(a-1\right)\left(a+1\right) in both numerator and denominator.
2a+4
Expand the expression.
\left(\frac{3a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}\right)\times \frac{a^{2}-1}{a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a+1 is \left(a-1\right)\left(a+1\right). Multiply \frac{3a}{a-1} times \frac{a+1}{a+1}. Multiply \frac{a}{a+1} times \frac{a-1}{a-1}.
\frac{3a\left(a+1\right)-a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}\times \frac{a^{2}-1}{a}
Since \frac{3a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}+3a-a^{2}+a}{\left(a-1\right)\left(a+1\right)}\times \frac{a^{2}-1}{a}
Do the multiplications in 3a\left(a+1\right)-a\left(a-1\right).
\frac{2a^{2}+4a}{\left(a-1\right)\left(a+1\right)}\times \frac{a^{2}-1}{a}
Combine like terms in 3a^{2}+3a-a^{2}+a.
\frac{\left(2a^{2}+4a\right)\left(a^{2}-1\right)}{\left(a-1\right)\left(a+1\right)a}
Multiply \frac{2a^{2}+4a}{\left(a-1\right)\left(a+1\right)} times \frac{a^{2}-1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{2a\left(a-1\right)\left(a+1\right)\left(a+2\right)}{a\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
2\left(a+2\right)
Cancel out a\left(a-1\right)\left(a+1\right) in both numerator and denominator.
2a+4
Expand the expression.