Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3a}{-4c}\right)^{-2}\times \left(\frac{5a}{c^{3}}\right)^{3}
Cancel out ac^{5} in both numerator and denominator.
\frac{\left(3a\right)^{-2}}{\left(-4c\right)^{-2}}\times \left(\frac{5a}{c^{3}}\right)^{3}
To raise \frac{3a}{-4c} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3a\right)^{-2}}{\left(-4c\right)^{-2}}\times \frac{\left(5a\right)^{3}}{\left(c^{3}\right)^{3}}
To raise \frac{5a}{c^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3a\right)^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}\left(c^{3}\right)^{3}}
Multiply \frac{\left(3a\right)^{-2}}{\left(-4c\right)^{-2}} times \frac{\left(5a\right)^{3}}{\left(c^{3}\right)^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3a\right)^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}c^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{3^{-2}a^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}c^{9}}
Expand \left(3a\right)^{-2}.
\frac{\frac{1}{9}a^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}c^{9}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}a^{-2}\times 5^{3}a^{3}}{\left(-4c\right)^{-2}c^{9}}
Expand \left(5a\right)^{3}.
\frac{\frac{1}{9}a^{-2}\times 125a^{3}}{\left(-4c\right)^{-2}c^{9}}
Calculate 5 to the power of 3 and get 125.
\frac{\frac{125}{9}a^{-2}a^{3}}{\left(-4c\right)^{-2}c^{9}}
Multiply \frac{1}{9} and 125 to get \frac{125}{9}.
\frac{\frac{125}{9}a^{1}}{\left(-4c\right)^{-2}c^{9}}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
\frac{\frac{125}{9}a^{1}}{\left(-4\right)^{-2}c^{-2}c^{9}}
Expand \left(-4c\right)^{-2}.
\frac{\frac{125}{9}a^{1}}{\frac{1}{16}c^{-2}c^{9}}
Calculate -4 to the power of -2 and get \frac{1}{16}.
\frac{\frac{125}{9}a^{1}}{\frac{1}{16}c^{7}}
To multiply powers of the same base, add their exponents. Add -2 and 9 to get 7.
\frac{\frac{125}{9}a}{\frac{1}{16}c^{7}}
Calculate a to the power of 1 and get a.
\left(\frac{3a}{-4c}\right)^{-2}\times \left(\frac{5a}{c^{3}}\right)^{3}
Cancel out ac^{5} in both numerator and denominator.
\frac{\left(3a\right)^{-2}}{\left(-4c\right)^{-2}}\times \left(\frac{5a}{c^{3}}\right)^{3}
To raise \frac{3a}{-4c} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3a\right)^{-2}}{\left(-4c\right)^{-2}}\times \frac{\left(5a\right)^{3}}{\left(c^{3}\right)^{3}}
To raise \frac{5a}{c^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3a\right)^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}\left(c^{3}\right)^{3}}
Multiply \frac{\left(3a\right)^{-2}}{\left(-4c\right)^{-2}} times \frac{\left(5a\right)^{3}}{\left(c^{3}\right)^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3a\right)^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}c^{9}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{3^{-2}a^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}c^{9}}
Expand \left(3a\right)^{-2}.
\frac{\frac{1}{9}a^{-2}\times \left(5a\right)^{3}}{\left(-4c\right)^{-2}c^{9}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}a^{-2}\times 5^{3}a^{3}}{\left(-4c\right)^{-2}c^{9}}
Expand \left(5a\right)^{3}.
\frac{\frac{1}{9}a^{-2}\times 125a^{3}}{\left(-4c\right)^{-2}c^{9}}
Calculate 5 to the power of 3 and get 125.
\frac{\frac{125}{9}a^{-2}a^{3}}{\left(-4c\right)^{-2}c^{9}}
Multiply \frac{1}{9} and 125 to get \frac{125}{9}.
\frac{\frac{125}{9}a^{1}}{\left(-4c\right)^{-2}c^{9}}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
\frac{\frac{125}{9}a^{1}}{\left(-4\right)^{-2}c^{-2}c^{9}}
Expand \left(-4c\right)^{-2}.
\frac{\frac{125}{9}a^{1}}{\frac{1}{16}c^{-2}c^{9}}
Calculate -4 to the power of -2 and get \frac{1}{16}.
\frac{\frac{125}{9}a^{1}}{\frac{1}{16}c^{7}}
To multiply powers of the same base, add their exponents. Add -2 and 9 to get 7.
\frac{\frac{125}{9}a}{\frac{1}{16}c^{7}}
Calculate a to the power of 1 and get a.