Evaluate
\frac{a^{2}+4a+16}{a\left(a-2\right)}
Expand
\frac{a^{2}+4a+16}{a\left(a-2\right)}
Share
Copied to clipboard
\left(\frac{3a+2}{a\left(a^{2}+4a+16\right)}-\frac{3a}{\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Factor a^{3}+4a^{2}+16a. Factor a^{3}-64.
\left(\frac{\left(3a+2\right)\left(a-4\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{3aa}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a^{2}+4a+16\right) and \left(a-4\right)\left(a^{2}+4a+16\right) is a\left(a-4\right)\left(a^{2}+4a+16\right). Multiply \frac{3a+2}{a\left(a^{2}+4a+16\right)} times \frac{a-4}{a-4}. Multiply \frac{3a}{\left(a-4\right)\left(a^{2}+4a+16\right)} times \frac{a}{a}.
\left(\frac{\left(3a+2\right)\left(a-4\right)-3aa}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Since \frac{\left(3a+2\right)\left(a-4\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)} and \frac{3aa}{a\left(a-4\right)\left(a^{2}+4a+16\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{3a^{2}-12a+2a-8-3a^{2}}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Do the multiplications in \left(3a+2\right)\left(a-4\right)-3aa.
\left(\frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Combine like terms in 3a^{2}-12a+2a-8-3a^{2}.
\left(\frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{a\left(-a+4\right)}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Factor 4a-a^{2}.
\left(\frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{-\left(a^{2}+4a+16\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-4\right)\left(a^{2}+4a+16\right) and a\left(-a+4\right) is a\left(a-4\right)\left(a^{2}+4a+16\right). Multiply \frac{1}{a\left(-a+4\right)} times \frac{-\left(a^{2}+4a+16\right)}{-\left(a^{2}+4a+16\right)}.
\frac{-10a-8-\left(-\left(a^{2}+4a+16\right)\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Since \frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)} and \frac{-\left(a^{2}+4a+16\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-10a-8+a^{2}+4a+16}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Do the multiplications in -10a-8-\left(-\left(a^{2}+4a+16\right)\right).
\frac{-6a+8+a^{2}}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Combine like terms in -10a-8+a^{2}+4a+16.
\frac{\left(a-4\right)\left(a-2\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Factor the expressions that are not already factored in \frac{-6a+8+a^{2}}{a\left(a-4\right)\left(a^{2}+4a+16\right)}.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Cancel out a-4 in both numerator and denominator.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\left(\frac{\left(a-8\right)\left(a-2\right)}{a-2}+\frac{14a}{a-2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-8 times \frac{a-2}{a-2}.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \left(\frac{\left(a-8\right)\left(a-2\right)+14a}{a-2}\right)^{2}
Since \frac{\left(a-8\right)\left(a-2\right)}{a-2} and \frac{14a}{a-2} have the same denominator, add them by adding their numerators.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \left(\frac{a^{2}-2a-8a+16+14a}{a-2}\right)^{2}
Do the multiplications in \left(a-8\right)\left(a-2\right)+14a.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \left(\frac{a^{2}+4a+16}{a-2}\right)^{2}
Combine like terms in a^{2}-2a-8a+16+14a.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \frac{\left(a^{2}+4a+16\right)^{2}}{\left(a-2\right)^{2}}
To raise \frac{a^{2}+4a+16}{a-2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a-2\right)\left(a^{2}+4a+16\right)^{2}}{a\left(a^{2}+4a+16\right)\left(a-2\right)^{2}}
Multiply \frac{a-2}{a\left(a^{2}+4a+16\right)} times \frac{\left(a^{2}+4a+16\right)^{2}}{\left(a-2\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}+4a+16}{a\left(a-2\right)}
Cancel out \left(a-2\right)\left(a^{2}+4a+16\right) in both numerator and denominator.
\frac{a^{2}+4a+16}{a^{2}-2a}
Use the distributive property to multiply a by a-2.
\left(\frac{3a+2}{a\left(a^{2}+4a+16\right)}-\frac{3a}{\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Factor a^{3}+4a^{2}+16a. Factor a^{3}-64.
\left(\frac{\left(3a+2\right)\left(a-4\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{3aa}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a^{2}+4a+16\right) and \left(a-4\right)\left(a^{2}+4a+16\right) is a\left(a-4\right)\left(a^{2}+4a+16\right). Multiply \frac{3a+2}{a\left(a^{2}+4a+16\right)} times \frac{a-4}{a-4}. Multiply \frac{3a}{\left(a-4\right)\left(a^{2}+4a+16\right)} times \frac{a}{a}.
\left(\frac{\left(3a+2\right)\left(a-4\right)-3aa}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Since \frac{\left(3a+2\right)\left(a-4\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)} and \frac{3aa}{a\left(a-4\right)\left(a^{2}+4a+16\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{3a^{2}-12a+2a-8-3a^{2}}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Do the multiplications in \left(3a+2\right)\left(a-4\right)-3aa.
\left(\frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{4a-a^{2}}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Combine like terms in 3a^{2}-12a+2a-8-3a^{2}.
\left(\frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{1}{a\left(-a+4\right)}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
Factor 4a-a^{2}.
\left(\frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)}-\frac{-\left(a^{2}+4a+16\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\right)\left(a-8+\frac{14a}{a-2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-4\right)\left(a^{2}+4a+16\right) and a\left(-a+4\right) is a\left(a-4\right)\left(a^{2}+4a+16\right). Multiply \frac{1}{a\left(-a+4\right)} times \frac{-\left(a^{2}+4a+16\right)}{-\left(a^{2}+4a+16\right)}.
\frac{-10a-8-\left(-\left(a^{2}+4a+16\right)\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Since \frac{-10a-8}{a\left(a-4\right)\left(a^{2}+4a+16\right)} and \frac{-\left(a^{2}+4a+16\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-10a-8+a^{2}+4a+16}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Do the multiplications in -10a-8-\left(-\left(a^{2}+4a+16\right)\right).
\frac{-6a+8+a^{2}}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Combine like terms in -10a-8+a^{2}+4a+16.
\frac{\left(a-4\right)\left(a-2\right)}{a\left(a-4\right)\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Factor the expressions that are not already factored in \frac{-6a+8+a^{2}}{a\left(a-4\right)\left(a^{2}+4a+16\right)}.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\left(a-8+\frac{14a}{a-2}\right)^{2}
Cancel out a-4 in both numerator and denominator.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\left(\frac{\left(a-8\right)\left(a-2\right)}{a-2}+\frac{14a}{a-2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-8 times \frac{a-2}{a-2}.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \left(\frac{\left(a-8\right)\left(a-2\right)+14a}{a-2}\right)^{2}
Since \frac{\left(a-8\right)\left(a-2\right)}{a-2} and \frac{14a}{a-2} have the same denominator, add them by adding their numerators.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \left(\frac{a^{2}-2a-8a+16+14a}{a-2}\right)^{2}
Do the multiplications in \left(a-8\right)\left(a-2\right)+14a.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \left(\frac{a^{2}+4a+16}{a-2}\right)^{2}
Combine like terms in a^{2}-2a-8a+16+14a.
\frac{a-2}{a\left(a^{2}+4a+16\right)}\times \frac{\left(a^{2}+4a+16\right)^{2}}{\left(a-2\right)^{2}}
To raise \frac{a^{2}+4a+16}{a-2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a-2\right)\left(a^{2}+4a+16\right)^{2}}{a\left(a^{2}+4a+16\right)\left(a-2\right)^{2}}
Multiply \frac{a-2}{a\left(a^{2}+4a+16\right)} times \frac{\left(a^{2}+4a+16\right)^{2}}{\left(a-2\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}+4a+16}{a\left(a-2\right)}
Cancel out \left(a-2\right)\left(a^{2}+4a+16\right) in both numerator and denominator.
\frac{a^{2}+4a+16}{a^{2}-2a}
Use the distributive property to multiply a by a-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}