Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Factor x^{2}-9.
\frac{\frac{3}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{1}{x-3} times \frac{x+3}{x+3}.
\frac{\frac{3-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Since \frac{3}{\left(x-3\right)\left(x+3\right)} and \frac{x+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-x-3}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Do the multiplications in 3-\left(x+3\right).
\frac{\frac{-x}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Combine like terms in 3-x-3.
\frac{\frac{-x}{\left(x-3\right)\left(x+3\right)}}{\frac{x\left(x-3\right)}{\left(x-3\right)^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-3x}{x^{2}-6x+9}.
\frac{\frac{-x}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-3}}
Cancel out x-3 in both numerator and denominator.
\frac{-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)x}
Divide \frac{-x}{\left(x-3\right)\left(x+3\right)} by \frac{x}{x-3} by multiplying \frac{-x}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x-3}.
\frac{-1}{x+3}
Cancel out x\left(x-3\right) in both numerator and denominator.
\frac{\frac{3}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Factor x^{2}-9.
\frac{\frac{3}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{1}{x-3} times \frac{x+3}{x+3}.
\frac{\frac{3-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Since \frac{3}{\left(x-3\right)\left(x+3\right)} and \frac{x+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-x-3}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Do the multiplications in 3-\left(x+3\right).
\frac{\frac{-x}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}-3x}{x^{2}-6x+9}}
Combine like terms in 3-x-3.
\frac{\frac{-x}{\left(x-3\right)\left(x+3\right)}}{\frac{x\left(x-3\right)}{\left(x-3\right)^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-3x}{x^{2}-6x+9}.
\frac{\frac{-x}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x-3}}
Cancel out x-3 in both numerator and denominator.
\frac{-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)x}
Divide \frac{-x}{\left(x-3\right)\left(x+3\right)} by \frac{x}{x-3} by multiplying \frac{-x}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x-3}.
\frac{-1}{x+3}
Cancel out x\left(x-3\right) in both numerator and denominator.