Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3}{\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Factor x^{2}-4. Factor x^{2}-4x+4.
\frac{\frac{3\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-2\right)^{2} is \left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{3}{\left(x-2\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{2}{\left(x-2\right)^{2}} times \frac{x+2}{x+2}.
\frac{\frac{3\left(x-2\right)-2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Since \frac{3\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}} and \frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x-6-2x-4}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Do the multiplications in 3\left(x-2\right)-2\left(x+2\right).
\frac{\frac{x-10}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Combine like terms in 3x-6-2x-4.
\frac{\left(x-10\right)\left(3x^{2}-12\right)}{\left(x+2\right)\left(x-2\right)^{2}\left(x-10\right)}
Divide \frac{x-10}{\left(x+2\right)\left(x-2\right)^{2}} by \frac{x-10}{3x^{2}-12} by multiplying \frac{x-10}{\left(x+2\right)\left(x-2\right)^{2}} by the reciprocal of \frac{x-10}{3x^{2}-12}.
\frac{3x^{2}-12}{\left(x+2\right)\left(x-2\right)^{2}}
Cancel out x-10 in both numerator and denominator.
\frac{3\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{3}{x-2}
Cancel out \left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{\frac{3}{\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Factor x^{2}-4. Factor x^{2}-4x+4.
\frac{\frac{3\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-2\right)^{2} is \left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{3}{\left(x-2\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{2}{\left(x-2\right)^{2}} times \frac{x+2}{x+2}.
\frac{\frac{3\left(x-2\right)-2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Since \frac{3\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}} and \frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x-6-2x-4}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Do the multiplications in 3\left(x-2\right)-2\left(x+2\right).
\frac{\frac{x-10}{\left(x+2\right)\left(x-2\right)^{2}}}{\frac{x-10}{3x^{2}-12}}
Combine like terms in 3x-6-2x-4.
\frac{\left(x-10\right)\left(3x^{2}-12\right)}{\left(x+2\right)\left(x-2\right)^{2}\left(x-10\right)}
Divide \frac{x-10}{\left(x+2\right)\left(x-2\right)^{2}} by \frac{x-10}{3x^{2}-12} by multiplying \frac{x-10}{\left(x+2\right)\left(x-2\right)^{2}} by the reciprocal of \frac{x-10}{3x^{2}-12}.
\frac{3x^{2}-12}{\left(x+2\right)\left(x-2\right)^{2}}
Cancel out x-10 in both numerator and denominator.
\frac{3\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{3}{x-2}
Cancel out \left(x-2\right)\left(x+2\right) in both numerator and denominator.