Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3}{\left(x-6\right)\left(x+6\right)}-\frac{1}{x+6}}{\frac{x-9}{x-6}}
Factor x^{2}-36.
\frac{\frac{3}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+6\right) and x+6 is \left(x-6\right)\left(x+6\right). Multiply \frac{1}{x+6} times \frac{x-6}{x-6}.
\frac{\frac{3-\left(x-6\right)}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
Since \frac{3}{\left(x-6\right)\left(x+6\right)} and \frac{x-6}{\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-x+6}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
Do the multiplications in 3-\left(x-6\right).
\frac{\frac{9-x}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
Combine like terms in 3-x+6.
\frac{\left(9-x\right)\left(x-6\right)}{\left(x-6\right)\left(x+6\right)\left(x-9\right)}
Divide \frac{9-x}{\left(x-6\right)\left(x+6\right)} by \frac{x-9}{x-6} by multiplying \frac{9-x}{\left(x-6\right)\left(x+6\right)} by the reciprocal of \frac{x-9}{x-6}.
\frac{-\left(x-9\right)\left(x-6\right)}{\left(x-9\right)\left(x-6\right)\left(x+6\right)}
Extract the negative sign in 9-x.
\frac{-1}{x+6}
Cancel out \left(x-9\right)\left(x-6\right) in both numerator and denominator.
\frac{\frac{3}{\left(x-6\right)\left(x+6\right)}-\frac{1}{x+6}}{\frac{x-9}{x-6}}
Factor x^{2}-36.
\frac{\frac{3}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+6\right) and x+6 is \left(x-6\right)\left(x+6\right). Multiply \frac{1}{x+6} times \frac{x-6}{x-6}.
\frac{\frac{3-\left(x-6\right)}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
Since \frac{3}{\left(x-6\right)\left(x+6\right)} and \frac{x-6}{\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-x+6}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
Do the multiplications in 3-\left(x-6\right).
\frac{\frac{9-x}{\left(x-6\right)\left(x+6\right)}}{\frac{x-9}{x-6}}
Combine like terms in 3-x+6.
\frac{\left(9-x\right)\left(x-6\right)}{\left(x-6\right)\left(x+6\right)\left(x-9\right)}
Divide \frac{9-x}{\left(x-6\right)\left(x+6\right)} by \frac{x-9}{x-6} by multiplying \frac{9-x}{\left(x-6\right)\left(x+6\right)} by the reciprocal of \frac{x-9}{x-6}.
\frac{-\left(x-9\right)\left(x-6\right)}{\left(x-9\right)\left(x-6\right)\left(x+6\right)}
Extract the negative sign in 9-x.
\frac{-1}{x+6}
Cancel out \left(x-9\right)\left(x-6\right) in both numerator and denominator.