( \frac { 3 } { x + 15 } + \frac { 4 } { 5 } = 1
Solve for x
x=0
Graph
Share
Copied to clipboard
5\times 3+5\left(x+15\right)\times \frac{4}{5}=5\left(x+15\right)
Variable x cannot be equal to -15 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+15\right), the least common multiple of x+15,5.
15+5\left(x+15\right)\times \frac{4}{5}=5\left(x+15\right)
Multiply 5 and 3 to get 15.
15+4\left(x+15\right)=5\left(x+15\right)
Multiply 5 and \frac{4}{5} to get 4.
15+4x+60=5\left(x+15\right)
Use the distributive property to multiply 4 by x+15.
75+4x=5\left(x+15\right)
Add 15 and 60 to get 75.
75+4x=5x+75
Use the distributive property to multiply 5 by x+15.
75+4x-5x=75
Subtract 5x from both sides.
75-x=75
Combine 4x and -5x to get -x.
-x=75-75
Subtract 75 from both sides.
-x=0
Subtract 75 from 75 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -1 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}