Evaluate
\frac{\left(r+6\right)\left(4r^{2}-1\right)}{8r}
Expand
\frac{r^{2}}{2}+3r-\frac{1}{8}-\frac{3}{4r}
Share
Copied to clipboard
\left(\frac{3\times 2}{2r}+\frac{r}{2r}\right)\left(r^{2}-\frac{1}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r and 2 is 2r. Multiply \frac{3}{r} times \frac{2}{2}. Multiply \frac{1}{2} times \frac{r}{r}.
\frac{3\times 2+r}{2r}\left(r^{2}-\frac{1}{4}\right)
Since \frac{3\times 2}{2r} and \frac{r}{2r} have the same denominator, add them by adding their numerators.
\frac{6+r}{2r}\left(r^{2}-\frac{1}{4}\right)
Do the multiplications in 3\times 2+r.
\frac{6+r}{2r}r^{2}-\frac{1}{4}\times \frac{6+r}{2r}
Use the distributive property to multiply \frac{6+r}{2r} by r^{2}-\frac{1}{4}.
\frac{\left(6+r\right)r^{2}}{2r}-\frac{1}{4}\times \frac{6+r}{2r}
Express \frac{6+r}{2r}r^{2} as a single fraction.
\frac{r\left(r+6\right)}{2}-\frac{1}{4}\times \frac{6+r}{2r}
Cancel out r in both numerator and denominator.
\frac{r\left(r+6\right)}{2}+\frac{-\left(6+r\right)}{4\times 2r}
Multiply -\frac{1}{4} times \frac{6+r}{2r} by multiplying numerator times numerator and denominator times denominator.
\frac{r\left(r+6\right)\times 4r}{2\times 4r}+\frac{-\left(6+r\right)}{2\times 4r}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4\times 2r is 2\times 4r. Multiply \frac{r\left(r+6\right)}{2} times \frac{4r}{4r}.
\frac{r\left(r+6\right)\times 4r-\left(6+r\right)}{2\times 4r}
Since \frac{r\left(r+6\right)\times 4r}{2\times 4r} and \frac{-\left(6+r\right)}{2\times 4r} have the same denominator, add them by adding their numerators.
\frac{4r^{3}+24r^{2}-6-r}{2\times 4r}
Do the multiplications in r\left(r+6\right)\times 4r-\left(6+r\right).
\frac{4r^{3}+24r^{2}-6-r}{8r}
Expand 2\times 4r.
\left(\frac{3\times 2}{2r}+\frac{r}{2r}\right)\left(r^{2}-\frac{1}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r and 2 is 2r. Multiply \frac{3}{r} times \frac{2}{2}. Multiply \frac{1}{2} times \frac{r}{r}.
\frac{3\times 2+r}{2r}\left(r^{2}-\frac{1}{4}\right)
Since \frac{3\times 2}{2r} and \frac{r}{2r} have the same denominator, add them by adding their numerators.
\frac{6+r}{2r}\left(r^{2}-\frac{1}{4}\right)
Do the multiplications in 3\times 2+r.
\frac{6+r}{2r}r^{2}-\frac{1}{4}\times \frac{6+r}{2r}
Use the distributive property to multiply \frac{6+r}{2r} by r^{2}-\frac{1}{4}.
\frac{\left(6+r\right)r^{2}}{2r}-\frac{1}{4}\times \frac{6+r}{2r}
Express \frac{6+r}{2r}r^{2} as a single fraction.
\frac{r\left(r+6\right)}{2}-\frac{1}{4}\times \frac{6+r}{2r}
Cancel out r in both numerator and denominator.
\frac{r\left(r+6\right)}{2}+\frac{-\left(6+r\right)}{4\times 2r}
Multiply -\frac{1}{4} times \frac{6+r}{2r} by multiplying numerator times numerator and denominator times denominator.
\frac{r\left(r+6\right)\times 4r}{2\times 4r}+\frac{-\left(6+r\right)}{2\times 4r}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4\times 2r is 2\times 4r. Multiply \frac{r\left(r+6\right)}{2} times \frac{4r}{4r}.
\frac{r\left(r+6\right)\times 4r-\left(6+r\right)}{2\times 4r}
Since \frac{r\left(r+6\right)\times 4r}{2\times 4r} and \frac{-\left(6+r\right)}{2\times 4r} have the same denominator, add them by adding their numerators.
\frac{4r^{3}+24r^{2}-6-r}{2\times 4r}
Do the multiplications in r\left(r+6\right)\times 4r-\left(6+r\right).
\frac{4r^{3}+24r^{2}-6-r}{8r}
Expand 2\times 4r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}