Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3\left(r-2\right)}{\left(r-2\right)\left(r+1\right)}-\frac{4\left(r+1\right)}{\left(r-2\right)\left(r+1\right)}\right)\times \frac{r-2}{r+10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r+1 and r-2 is \left(r-2\right)\left(r+1\right). Multiply \frac{3}{r+1} times \frac{r-2}{r-2}. Multiply \frac{4}{r-2} times \frac{r+1}{r+1}.
\frac{3\left(r-2\right)-4\left(r+1\right)}{\left(r-2\right)\left(r+1\right)}\times \frac{r-2}{r+10}
Since \frac{3\left(r-2\right)}{\left(r-2\right)\left(r+1\right)} and \frac{4\left(r+1\right)}{\left(r-2\right)\left(r+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3r-6-4r-4}{\left(r-2\right)\left(r+1\right)}\times \frac{r-2}{r+10}
Do the multiplications in 3\left(r-2\right)-4\left(r+1\right).
\frac{-r-10}{\left(r-2\right)\left(r+1\right)}\times \frac{r-2}{r+10}
Combine like terms in 3r-6-4r-4.
\frac{\left(-r-10\right)\left(r-2\right)}{\left(r-2\right)\left(r+1\right)\left(r+10\right)}
Multiply \frac{-r-10}{\left(r-2\right)\left(r+1\right)} times \frac{r-2}{r+10} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(r-2\right)\left(r+10\right)}{\left(r-2\right)\left(r+1\right)\left(r+10\right)}
Extract the negative sign in -r-10.
\frac{-1}{r+1}
Cancel out \left(r-2\right)\left(r+10\right) in both numerator and denominator.
\left(\frac{3\left(r-2\right)}{\left(r-2\right)\left(r+1\right)}-\frac{4\left(r+1\right)}{\left(r-2\right)\left(r+1\right)}\right)\times \frac{r-2}{r+10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r+1 and r-2 is \left(r-2\right)\left(r+1\right). Multiply \frac{3}{r+1} times \frac{r-2}{r-2}. Multiply \frac{4}{r-2} times \frac{r+1}{r+1}.
\frac{3\left(r-2\right)-4\left(r+1\right)}{\left(r-2\right)\left(r+1\right)}\times \frac{r-2}{r+10}
Since \frac{3\left(r-2\right)}{\left(r-2\right)\left(r+1\right)} and \frac{4\left(r+1\right)}{\left(r-2\right)\left(r+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3r-6-4r-4}{\left(r-2\right)\left(r+1\right)}\times \frac{r-2}{r+10}
Do the multiplications in 3\left(r-2\right)-4\left(r+1\right).
\frac{-r-10}{\left(r-2\right)\left(r+1\right)}\times \frac{r-2}{r+10}
Combine like terms in 3r-6-4r-4.
\frac{\left(-r-10\right)\left(r-2\right)}{\left(r-2\right)\left(r+1\right)\left(r+10\right)}
Multiply \frac{-r-10}{\left(r-2\right)\left(r+1\right)} times \frac{r-2}{r+10} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(r-2\right)\left(r+10\right)}{\left(r-2\right)\left(r+1\right)\left(r+10\right)}
Extract the negative sign in -r-10.
\frac{-1}{r+1}
Cancel out \left(r-2\right)\left(r+10\right) in both numerator and denominator.