Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}+\frac{2\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right)\left(a^{2}-4\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a+2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3}{a-2} times \frac{a+2}{a+2}. Multiply \frac{2}{a+2} times \frac{a-2}{a-2}.
\frac{3\left(a+2\right)+2\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right)
Since \frac{3\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{2\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{3a+6+2a-4}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right)
Do the multiplications in 3\left(a+2\right)+2\left(a-2\right).
\frac{5a+2}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right)
Combine like terms in 3a+6+2a-4.
\frac{\left(5a+2\right)\left(a^{2}-4\right)}{\left(a-2\right)\left(a+2\right)}
Express \frac{5a+2}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right) as a single fraction.
\frac{\left(a-2\right)\left(a+2\right)\left(5a+2\right)}{\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored.
5a+2
Cancel out \left(a-2\right)\left(a+2\right) in both numerator and denominator.
\left(\frac{3\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}+\frac{2\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right)\left(a^{2}-4\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a+2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3}{a-2} times \frac{a+2}{a+2}. Multiply \frac{2}{a+2} times \frac{a-2}{a-2}.
\frac{3\left(a+2\right)+2\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right)
Since \frac{3\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{2\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{3a+6+2a-4}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right)
Do the multiplications in 3\left(a+2\right)+2\left(a-2\right).
\frac{5a+2}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right)
Combine like terms in 3a+6+2a-4.
\frac{\left(5a+2\right)\left(a^{2}-4\right)}{\left(a-2\right)\left(a+2\right)}
Express \frac{5a+2}{\left(a-2\right)\left(a+2\right)}\left(a^{2}-4\right) as a single fraction.
\frac{\left(a-2\right)\left(a+2\right)\left(5a+2\right)}{\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored.
5a+2
Cancel out \left(a-2\right)\left(a+2\right) in both numerator and denominator.