Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{a+1}{a+1}.
\frac{\frac{3+\left(-a+1\right)\left(a+1\right)}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
Since \frac{3}{a+1} and \frac{\left(-a+1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{\frac{3-a^{2}-a+a+1}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
Do the multiplications in 3+\left(-a+1\right)\left(a+1\right).
\frac{\frac{4-a^{2}}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
Combine like terms in 3-a^{2}-a+a+1.
\frac{\left(4-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a^{2}-4a+4\right)}
Divide \frac{4-a^{2}}{a+1} by \frac{a^{2}-4a+4}{a+1} by multiplying \frac{4-a^{2}}{a+1} by the reciprocal of \frac{a^{2}-4a+4}{a+1}.
\frac{-a^{2}+4}{a^{2}-4a+4}
Cancel out a+1 in both numerator and denominator.
\frac{\left(a-2\right)\left(-a-2\right)}{\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{-a-2}{a-2}
Cancel out a-2 in both numerator and denominator.
\frac{\frac{3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{a+1}{a+1}.
\frac{\frac{3+\left(-a+1\right)\left(a+1\right)}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
Since \frac{3}{a+1} and \frac{\left(-a+1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{\frac{3-a^{2}-a+a+1}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
Do the multiplications in 3+\left(-a+1\right)\left(a+1\right).
\frac{\frac{4-a^{2}}{a+1}}{\frac{a^{2}-4a+4}{a+1}}
Combine like terms in 3-a^{2}-a+a+1.
\frac{\left(4-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a^{2}-4a+4\right)}
Divide \frac{4-a^{2}}{a+1} by \frac{a^{2}-4a+4}{a+1} by multiplying \frac{4-a^{2}}{a+1} by the reciprocal of \frac{a^{2}-4a+4}{a+1}.
\frac{-a^{2}+4}{a^{2}-4a+4}
Cancel out a+1 in both numerator and denominator.
\frac{\left(a-2\right)\left(-a-2\right)}{\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{-a-2}{a-2}
Cancel out a-2 in both numerator and denominator.