Evaluate
\frac{17xy}{15}+\frac{39x^{2}}{40}-\frac{21y^{2}}{10}
Expand
\frac{17xy}{15}+\frac{39x^{2}}{40}-\frac{21y^{2}}{10}
Share
Copied to clipboard
\frac{3}{8}x^{2}+\frac{5}{6}xy-\frac{1}{10}y^{2}+\frac{3}{5}x^{2}-2y^{2}+\frac{3}{10}xy
To find the opposite of -\frac{3}{5}x^{2}+2y^{2}-\frac{3}{10}xy, find the opposite of each term.
\frac{39}{40}x^{2}+\frac{5}{6}xy-\frac{1}{10}y^{2}-2y^{2}+\frac{3}{10}xy
Combine \frac{3}{8}x^{2} and \frac{3}{5}x^{2} to get \frac{39}{40}x^{2}.
\frac{39}{40}x^{2}+\frac{5}{6}xy-\frac{21}{10}y^{2}+\frac{3}{10}xy
Combine -\frac{1}{10}y^{2} and -2y^{2} to get -\frac{21}{10}y^{2}.
\frac{39}{40}x^{2}+\frac{17}{15}xy-\frac{21}{10}y^{2}
Combine \frac{5}{6}xy and \frac{3}{10}xy to get \frac{17}{15}xy.
\frac{3}{8}x^{2}+\frac{5}{6}xy-\frac{1}{10}y^{2}+\frac{3}{5}x^{2}-2y^{2}+\frac{3}{10}xy
To find the opposite of -\frac{3}{5}x^{2}+2y^{2}-\frac{3}{10}xy, find the opposite of each term.
\frac{39}{40}x^{2}+\frac{5}{6}xy-\frac{1}{10}y^{2}-2y^{2}+\frac{3}{10}xy
Combine \frac{3}{8}x^{2} and \frac{3}{5}x^{2} to get \frac{39}{40}x^{2}.
\frac{39}{40}x^{2}+\frac{5}{6}xy-\frac{21}{10}y^{2}+\frac{3}{10}xy
Combine -\frac{1}{10}y^{2} and -2y^{2} to get -\frac{21}{10}y^{2}.
\frac{39}{40}x^{2}+\frac{17}{15}xy-\frac{21}{10}y^{2}
Combine \frac{5}{6}xy and \frac{3}{10}xy to get \frac{17}{15}xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}