Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3^{-1}}{\left(5x\right)^{-1}}
To raise \frac{3}{5x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{3}}{\left(5x\right)^{-1}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\frac{1}{3}}{5^{-1}x^{-1}}
Expand \left(5x\right)^{-1}.
\frac{\frac{1}{3}}{\frac{1}{5}x^{-1}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{1}{3\times \frac{1}{5}x^{-1}}
Express \frac{\frac{1}{3}}{\frac{1}{5}x^{-1}} as a single fraction.
\frac{1}{\frac{3}{5}x^{-1}}
Multiply 3 and \frac{1}{5} to get \frac{3}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3^{-1}}{\left(5x\right)^{-1}})
To raise \frac{3}{5x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{3}}{\left(5x\right)^{-1}})
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{3}}{5^{-1}x^{-1}})
Expand \left(5x\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{3}}{\frac{1}{5}x^{-1}})
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3\times \frac{1}{5}x^{-1}})
Express \frac{\frac{1}{3}}{\frac{1}{5}x^{-1}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{3}{5}x^{-1}})
Multiply 3 and \frac{1}{5} to get \frac{3}{5}.
-\left(\frac{3}{5}\times \frac{1}{x}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{5}\times \frac{1}{x})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(\frac{3}{5}\times \frac{1}{x}\right)^{-2}\left(-1\right)\times \frac{3}{5}x^{-1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{3}{5}x^{-2}\times \left(\frac{3}{5}\times \frac{1}{x}\right)^{-2}
Simplify.