Evaluate
-\frac{4yx^{2}}{75}
Expand
-\frac{4yx^{2}}{75}
Share
Copied to clipboard
\frac{\left(\frac{3}{5}xy^{2}\right)^{2}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply x and x to get x^{2}.
\frac{\left(\frac{3}{5}\right)^{2}x^{2}\left(y^{2}\right)^{2}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Expand \left(\frac{3}{5}xy^{2}\right)^{2}.
\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{4}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{9}{25}x^{2}y^{4}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{\frac{9}{25}x^{2}y^{4}}{\left(\frac{3}{2}\right)^{3}y^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Expand \left(\frac{3}{2}y\right)^{3}.
\frac{\frac{9}{25}x^{2}y^{4}}{\frac{27}{8}y^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Calculate \frac{3}{2} to the power of 3 and get \frac{27}{8}.
\frac{\frac{9}{25}yx^{2}}{\frac{27}{8}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Cancel out y^{3} in both numerator and denominator.
\frac{\frac{9}{25}yx^{2}\times 8}{27}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Divide \frac{9}{25}yx^{2} by \frac{27}{8} by multiplying \frac{9}{25}yx^{2} by the reciprocal of \frac{27}{8}.
\frac{\frac{72}{25}yx^{2}}{27}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply \frac{9}{25} and 8 to get \frac{72}{25}.
\frac{8}{75}yx^{2}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Divide \frac{72}{25}yx^{2} by 27 to get \frac{8}{75}yx^{2}.
\frac{8}{75}yx^{2}-\frac{1}{2}x^{2}y\times \frac{1}{25}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{8}{75}yx^{2}-\frac{1}{50}x^{2}y\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply \frac{1}{2} and \frac{1}{25} to get \frac{1}{50}.
\frac{8}{75}yx^{2}-\left(-\frac{1}{25}x^{2}y\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply \frac{1}{50} and -2 to get -\frac{1}{25}.
\frac{8}{75}yx^{2}+\frac{1}{25}x^{2}y-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
The opposite of -\frac{1}{25}x^{2}y is \frac{1}{25}x^{2}y.
\frac{11}{75}yx^{2}-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Combine \frac{8}{75}yx^{2} and \frac{1}{25}x^{2}y to get \frac{11}{75}yx^{2}.
\frac{11}{75}yx^{2}-\frac{\left(-x\right)^{2}y^{2}}{5y}
Expand \left(\left(-x\right)y\right)^{2}.
\frac{11}{75}yx^{2}-\frac{x^{2}y^{2}}{5y}
Calculate -x to the power of 2 and get x^{2}.
\frac{11}{75}yx^{2}-\frac{yx^{2}}{5}
Cancel out y in both numerator and denominator.
-\frac{4}{75}yx^{2}
Combine \frac{11}{75}yx^{2} and -\frac{yx^{2}}{5} to get -\frac{4}{75}yx^{2}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{2}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply x and x to get x^{2}.
\frac{\left(\frac{3}{5}\right)^{2}x^{2}\left(y^{2}\right)^{2}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Expand \left(\frac{3}{5}xy^{2}\right)^{2}.
\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{4}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{9}{25}x^{2}y^{4}}{\left(\frac{3}{2}y\right)^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{\frac{9}{25}x^{2}y^{4}}{\left(\frac{3}{2}\right)^{3}y^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Expand \left(\frac{3}{2}y\right)^{3}.
\frac{\frac{9}{25}x^{2}y^{4}}{\frac{27}{8}y^{3}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Calculate \frac{3}{2} to the power of 3 and get \frac{27}{8}.
\frac{\frac{9}{25}yx^{2}}{\frac{27}{8}}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Cancel out y^{3} in both numerator and denominator.
\frac{\frac{9}{25}yx^{2}\times 8}{27}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Divide \frac{9}{25}yx^{2} by \frac{27}{8} by multiplying \frac{9}{25}yx^{2} by the reciprocal of \frac{27}{8}.
\frac{\frac{72}{25}yx^{2}}{27}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply \frac{9}{25} and 8 to get \frac{72}{25}.
\frac{8}{75}yx^{2}-\frac{1}{2}x^{2}y\left(-\frac{1}{5}\right)^{2}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Divide \frac{72}{25}yx^{2} by 27 to get \frac{8}{75}yx^{2}.
\frac{8}{75}yx^{2}-\frac{1}{2}x^{2}y\times \frac{1}{25}\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{8}{75}yx^{2}-\frac{1}{50}x^{2}y\left(-2\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply \frac{1}{2} and \frac{1}{25} to get \frac{1}{50}.
\frac{8}{75}yx^{2}-\left(-\frac{1}{25}x^{2}y\right)-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Multiply \frac{1}{50} and -2 to get -\frac{1}{25}.
\frac{8}{75}yx^{2}+\frac{1}{25}x^{2}y-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
The opposite of -\frac{1}{25}x^{2}y is \frac{1}{25}x^{2}y.
\frac{11}{75}yx^{2}-\frac{\left(\left(-x\right)y\right)^{2}}{5y}
Combine \frac{8}{75}yx^{2} and \frac{1}{25}x^{2}y to get \frac{11}{75}yx^{2}.
\frac{11}{75}yx^{2}-\frac{\left(-x\right)^{2}y^{2}}{5y}
Expand \left(\left(-x\right)y\right)^{2}.
\frac{11}{75}yx^{2}-\frac{x^{2}y^{2}}{5y}
Calculate -x to the power of 2 and get x^{2}.
\frac{11}{75}yx^{2}-\frac{yx^{2}}{5}
Cancel out y in both numerator and denominator.
-\frac{4}{75}yx^{2}
Combine \frac{11}{75}yx^{2} and -\frac{yx^{2}}{5} to get -\frac{4}{75}yx^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}