Evaluate
\frac{55x^{3}\left(yz\right)^{2}}{36}
Expand
\frac{55x^{3}\left(yz\right)^{2}}{36}
Share
Copied to clipboard
\frac{\frac{3}{5}x^{4}y^{3}z^{3}+\frac{1}{4}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}yz\times \frac{10}{7}yz
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\frac{3}{5}x^{4}y^{3}z^{3}+\frac{1}{4}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z\times \frac{10}{7}z
Multiply y and y to get y^{2}.
\frac{\frac{3}{5}x^{4}y^{3}z^{3}+\frac{1}{4}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Multiply z and z to get z^{2}.
\frac{\frac{17}{20}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{3}{5}x^{4}y^{3}z^{3} and \frac{1}{4}x^{4}y^{3}z^{3} to get \frac{17}{20}x^{4}y^{3}z^{3}.
\frac{\frac{19}{40}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{17}{20}x^{4}y^{3}z^{3} and -\frac{3}{8}x^{4}y^{3}z^{3} to get \frac{19}{40}x^{4}y^{3}z^{3}.
\frac{\frac{19}{40}x^{4}y^{3}z^{3}}{\frac{19}{10}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{2}{5}xyz and \frac{3}{2}xyz to get \frac{19}{10}xyz.
\frac{\frac{19}{40}x^{4}y^{3}z^{3}}{\frac{9}{10}xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{19}{10}xyz and -xyz to get \frac{9}{10}xyz.
\frac{\frac{19}{40}y^{2}z^{2}x^{3}}{\frac{9}{10}}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Cancel out xyz in both numerator and denominator.
\frac{\frac{19}{40}y^{2}z^{2}x^{3}\times 10}{9}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Divide \frac{19}{40}y^{2}z^{2}x^{3} by \frac{9}{10} by multiplying \frac{19}{40}y^{2}z^{2}x^{3} by the reciprocal of \frac{9}{10}.
\frac{\frac{19}{4}y^{2}z^{2}x^{3}}{9}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Multiply \frac{19}{40} and 10 to get \frac{19}{4}.
\frac{19}{36}y^{2}z^{2}x^{3}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Divide \frac{19}{4}y^{2}z^{2}x^{3} by 9 to get \frac{19}{36}y^{2}z^{2}x^{3}.
\frac{19}{36}y^{2}z^{2}x^{3}+x^{3}y^{2}z^{2}
Multiply \frac{7}{10} and \frac{10}{7} to get 1.
\frac{55}{36}y^{2}z^{2}x^{3}
Combine \frac{19}{36}y^{2}z^{2}x^{3} and x^{3}y^{2}z^{2} to get \frac{55}{36}y^{2}z^{2}x^{3}.
\frac{\frac{3}{5}x^{4}y^{3}z^{3}+\frac{1}{4}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}yz\times \frac{10}{7}yz
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\frac{3}{5}x^{4}y^{3}z^{3}+\frac{1}{4}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z\times \frac{10}{7}z
Multiply y and y to get y^{2}.
\frac{\frac{3}{5}x^{4}y^{3}z^{3}+\frac{1}{4}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Multiply z and z to get z^{2}.
\frac{\frac{17}{20}x^{4}y^{3}z^{3}-\frac{3}{8}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{3}{5}x^{4}y^{3}z^{3} and \frac{1}{4}x^{4}y^{3}z^{3} to get \frac{17}{20}x^{4}y^{3}z^{3}.
\frac{\frac{19}{40}x^{4}y^{3}z^{3}}{\frac{2}{5}xyz+\frac{3}{2}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{17}{20}x^{4}y^{3}z^{3} and -\frac{3}{8}x^{4}y^{3}z^{3} to get \frac{19}{40}x^{4}y^{3}z^{3}.
\frac{\frac{19}{40}x^{4}y^{3}z^{3}}{\frac{19}{10}xyz-xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{2}{5}xyz and \frac{3}{2}xyz to get \frac{19}{10}xyz.
\frac{\frac{19}{40}x^{4}y^{3}z^{3}}{\frac{9}{10}xyz}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Combine \frac{19}{10}xyz and -xyz to get \frac{9}{10}xyz.
\frac{\frac{19}{40}y^{2}z^{2}x^{3}}{\frac{9}{10}}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Cancel out xyz in both numerator and denominator.
\frac{\frac{19}{40}y^{2}z^{2}x^{3}\times 10}{9}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Divide \frac{19}{40}y^{2}z^{2}x^{3} by \frac{9}{10} by multiplying \frac{19}{40}y^{2}z^{2}x^{3} by the reciprocal of \frac{9}{10}.
\frac{\frac{19}{4}y^{2}z^{2}x^{3}}{9}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Multiply \frac{19}{40} and 10 to get \frac{19}{4}.
\frac{19}{36}y^{2}z^{2}x^{3}+\frac{7}{10}x^{3}y^{2}z^{2}\times \frac{10}{7}
Divide \frac{19}{4}y^{2}z^{2}x^{3} by 9 to get \frac{19}{36}y^{2}z^{2}x^{3}.
\frac{19}{36}y^{2}z^{2}x^{3}+x^{3}y^{2}z^{2}
Multiply \frac{7}{10} and \frac{10}{7} to get 1.
\frac{55}{36}y^{2}z^{2}x^{3}
Combine \frac{19}{36}y^{2}z^{2}x^{3} and x^{3}y^{2}z^{2} to get \frac{55}{36}y^{2}z^{2}x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}