Evaluate
\frac{5}{6}\approx 0.833333333
Factor
\frac{5}{2 \cdot 3} = 0.8333333333333334
Share
Copied to clipboard
\frac{\frac{19683}{1953125}}{\left(\frac{27}{25}\right)^{9}}\times \left(\frac{9}{5}\right)^{9}-\frac{\left(\frac{3}{2}\times \frac{2}{3}-\frac{2}{3}\right)^{2}}{\frac{2}{3}}
Calculate \frac{3}{5} to the power of 9 and get \frac{19683}{1953125}.
\frac{\frac{19683}{1953125}}{\frac{7625597484987}{3814697265625}}\times \left(\frac{9}{5}\right)^{9}-\frac{\left(\frac{3}{2}\times \frac{2}{3}-\frac{2}{3}\right)^{2}}{\frac{2}{3}}
Calculate \frac{27}{25} to the power of 9 and get \frac{7625597484987}{3814697265625}.
\frac{19683}{1953125}\times \frac{3814697265625}{7625597484987}\times \left(\frac{9}{5}\right)^{9}-\frac{\left(\frac{3}{2}\times \frac{2}{3}-\frac{2}{3}\right)^{2}}{\frac{2}{3}}
Divide \frac{19683}{1953125} by \frac{7625597484987}{3814697265625} by multiplying \frac{19683}{1953125} by the reciprocal of \frac{7625597484987}{3814697265625}.
\frac{1953125}{387420489}\times \left(\frac{9}{5}\right)^{9}-\frac{\left(\frac{3}{2}\times \frac{2}{3}-\frac{2}{3}\right)^{2}}{\frac{2}{3}}
Multiply \frac{19683}{1953125} and \frac{3814697265625}{7625597484987} to get \frac{1953125}{387420489}.
\frac{1953125}{387420489}\times \frac{387420489}{1953125}-\frac{\left(\frac{3}{2}\times \frac{2}{3}-\frac{2}{3}\right)^{2}}{\frac{2}{3}}
Calculate \frac{9}{5} to the power of 9 and get \frac{387420489}{1953125}.
1-\frac{\left(\frac{3}{2}\times \frac{2}{3}-\frac{2}{3}\right)^{2}}{\frac{2}{3}}
Multiply \frac{1953125}{387420489} and \frac{387420489}{1953125} to get 1.
1-\frac{\left(1-\frac{2}{3}\right)^{2}}{\frac{2}{3}}
Multiply \frac{3}{2} and \frac{2}{3} to get 1.
1-\frac{\left(\frac{1}{3}\right)^{2}}{\frac{2}{3}}
Subtract \frac{2}{3} from 1 to get \frac{1}{3}.
1-\frac{\frac{1}{9}}{\frac{2}{3}}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
1-\frac{1}{9}\times \frac{3}{2}
Divide \frac{1}{9} by \frac{2}{3} by multiplying \frac{1}{9} by the reciprocal of \frac{2}{3}.
1-\frac{1}{6}
Multiply \frac{1}{9} and \frac{3}{2} to get \frac{1}{6}.
\frac{5}{6}
Subtract \frac{1}{6} from 1 to get \frac{5}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}