Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Share

\frac{\left(\frac{5}{3}\right)^{x}}{\left(\frac{3}{5}\right)^{1}}=\left(\frac{3}{5}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{5}{3}\right)^{x}}{\frac{3}{5}}=\left(\frac{3}{5}\right)^{-3}
Calculate \frac{3}{5} to the power of 1 and get \frac{3}{5}.
\frac{\left(\frac{5}{3}\right)^{x}}{\frac{3}{5}}=\frac{125}{27}
Calculate \frac{3}{5} to the power of -3 and get \frac{125}{27}.
\left(\frac{5}{3}\right)^{x}=\frac{125}{27}\times \frac{3}{5}
Multiply both sides by \frac{3}{5}.
\left(\frac{5}{3}\right)^{x}=\frac{25}{9}
Multiply \frac{125}{27} and \frac{3}{5} to get \frac{25}{9}.
\log(\left(\frac{5}{3}\right)^{x})=\log(\frac{25}{9})
Take the logarithm of both sides of the equation.
x\log(\frac{5}{3})=\log(\frac{25}{9})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{25}{9})}{\log(\frac{5}{3})}
Divide both sides by \log(\frac{5}{3}).
x=\log_{\frac{5}{3}}\left(\frac{25}{9}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).