Solve for x
x=2
Solve for x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(\frac{5}{3})}+2
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{\left(\frac{5}{3}\right)^{x}}{\left(\frac{3}{5}\right)^{1}}=\left(\frac{3}{5}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{5}{3}\right)^{x}}{\frac{3}{5}}=\left(\frac{3}{5}\right)^{-3}
Calculate \frac{3}{5} to the power of 1 and get \frac{3}{5}.
\frac{\left(\frac{5}{3}\right)^{x}}{\frac{3}{5}}=\frac{125}{27}
Calculate \frac{3}{5} to the power of -3 and get \frac{125}{27}.
\left(\frac{5}{3}\right)^{x}=\frac{125}{27}\times \frac{3}{5}
Multiply both sides by \frac{3}{5}.
\left(\frac{5}{3}\right)^{x}=\frac{25}{9}
Multiply \frac{125}{27} and \frac{3}{5} to get \frac{25}{9}.
\log(\left(\frac{5}{3}\right)^{x})=\log(\frac{25}{9})
Take the logarithm of both sides of the equation.
x\log(\frac{5}{3})=\log(\frac{25}{9})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{25}{9})}{\log(\frac{5}{3})}
Divide both sides by \log(\frac{5}{3}).
x=\log_{\frac{5}{3}}\left(\frac{25}{9}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}