Evaluate
\frac{8ϕ}{5}-\frac{8}{9}
Factor
\frac{8\left(9ϕ-5\right)}{45}
Share
Copied to clipboard
\frac{3}{5}\times \frac{20}{9}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Divide \frac{3}{5} by \frac{9}{20} by multiplying \frac{3}{5} by the reciprocal of \frac{9}{20}.
\frac{3\times 20}{5\times 9}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Multiply \frac{3}{5} times \frac{20}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{45}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Do the multiplications in the fraction \frac{3\times 20}{5\times 9}.
\frac{4}{3}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Reduce the fraction \frac{60}{45} to lowest terms by extracting and canceling out 15.
\frac{4\times 1}{3\times 3}+\frac{8}{5}ϕ-\frac{4}{3}
Multiply \frac{4}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{9}+\frac{8}{5}ϕ-\frac{4}{3}
Do the multiplications in the fraction \frac{4\times 1}{3\times 3}.
\frac{4}{9}+\frac{8}{5}ϕ-\frac{12}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{4}{9} and \frac{4}{3} to fractions with denominator 9.
\frac{4-12}{9}+\frac{8}{5}ϕ
Since \frac{4}{9} and \frac{12}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{8}{9}+\frac{8}{5}ϕ
Subtract 12 from 4 to get -8.
\frac{4\left(-10+18ϕ\right)}{45}
Factor out \frac{4}{45}.
18ϕ-10
Consider 5+18ϕ-15. Multiply and combine like terms.
2\left(9ϕ-5\right)
Consider 18ϕ-10. Factor out 2.
\frac{8\left(9ϕ-5\right)}{45}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}