Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{5}\times \frac{20}{9}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Divide \frac{3}{5} by \frac{9}{20} by multiplying \frac{3}{5} by the reciprocal of \frac{9}{20}.
\frac{3\times 20}{5\times 9}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Multiply \frac{3}{5} times \frac{20}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{45}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Do the multiplications in the fraction \frac{3\times 20}{5\times 9}.
\frac{4}{3}\times \frac{1}{3}+\frac{8}{5}ϕ-\frac{4}{3}
Reduce the fraction \frac{60}{45} to lowest terms by extracting and canceling out 15.
\frac{4\times 1}{3\times 3}+\frac{8}{5}ϕ-\frac{4}{3}
Multiply \frac{4}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{9}+\frac{8}{5}ϕ-\frac{4}{3}
Do the multiplications in the fraction \frac{4\times 1}{3\times 3}.
\frac{4}{9}+\frac{8}{5}ϕ-\frac{12}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{4}{9} and \frac{4}{3} to fractions with denominator 9.
\frac{4-12}{9}+\frac{8}{5}ϕ
Since \frac{4}{9} and \frac{12}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{8}{9}+\frac{8}{5}ϕ
Subtract 12 from 4 to get -8.
\frac{4\left(-10+18ϕ\right)}{45}
Factor out \frac{4}{45}.
18ϕ-10
Consider 5+18ϕ-15. Multiply and combine like terms.
2\left(9ϕ-5\right)
Consider 18ϕ-10. Factor out 2.
\frac{8\left(9ϕ-5\right)}{45}
Rewrite the complete factored expression.