Evaluate
-\frac{16}{15}\approx -1.066666667
Factor
-\frac{16}{15} = -1\frac{1}{15} = -1.0666666666666667
Share
Copied to clipboard
\frac{3\times 1}{5\times 3}-\left(1-\left(\frac{3}{4}-\frac{1}{2}\right)+\frac{2}{3}-\frac{3}{20}\right)
Multiply \frac{3}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}-\left(1-\left(\frac{3}{4}-\frac{1}{2}\right)+\frac{2}{3}-\frac{3}{20}\right)
Cancel out 3 in both numerator and denominator.
\frac{1}{5}-\left(1-\left(\frac{3}{4}-\frac{2}{4}\right)+\frac{2}{3}-\frac{3}{20}\right)
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{1}{5}-\left(1-\frac{3-2}{4}+\frac{2}{3}-\frac{3}{20}\right)
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\left(1-\frac{1}{4}+\frac{2}{3}-\frac{3}{20}\right)
Subtract 2 from 3 to get 1.
\frac{1}{5}-\left(\frac{4}{4}-\frac{1}{4}+\frac{2}{3}-\frac{3}{20}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{1}{5}-\left(\frac{4-1}{4}+\frac{2}{3}-\frac{3}{20}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\left(\frac{3}{4}+\frac{2}{3}-\frac{3}{20}\right)
Subtract 1 from 4 to get 3.
\frac{1}{5}-\left(\frac{9}{12}+\frac{8}{12}-\frac{3}{20}\right)
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{1}{5}-\left(\frac{9+8}{12}-\frac{3}{20}\right)
Since \frac{9}{12} and \frac{8}{12} have the same denominator, add them by adding their numerators.
\frac{1}{5}-\left(\frac{17}{12}-\frac{3}{20}\right)
Add 9 and 8 to get 17.
\frac{1}{5}-\left(\frac{85}{60}-\frac{9}{60}\right)
Least common multiple of 12 and 20 is 60. Convert \frac{17}{12} and \frac{3}{20} to fractions with denominator 60.
\frac{1}{5}-\frac{85-9}{60}
Since \frac{85}{60} and \frac{9}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\frac{76}{60}
Subtract 9 from 85 to get 76.
\frac{1}{5}-\frac{19}{15}
Reduce the fraction \frac{76}{60} to lowest terms by extracting and canceling out 4.
\frac{3}{15}-\frac{19}{15}
Least common multiple of 5 and 15 is 15. Convert \frac{1}{5} and \frac{19}{15} to fractions with denominator 15.
\frac{3-19}{15}
Since \frac{3}{15} and \frac{19}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{16}{15}
Subtract 19 from 3 to get -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}