Evaluate
\frac{9x^{2}}{16}-\frac{4y^{2}}{25}
Expand
\frac{9x^{2}}{16}-\frac{4y^{2}}{25}
Share
Copied to clipboard
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x\times \frac{3}{4}x+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Apply the distributive property by multiplying each term of \frac{3}{4}x+\frac{2}{5}y by each term of -\frac{2}{5}y+\frac{3}{4}x.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Multiply x and x to get x^{2}.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply y and y to get y^{2}.
\frac{3\left(-2\right)}{4\times 5}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-6}{20}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\left(-2\right)}{4\times 5}.
-\frac{3}{10}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
-\frac{3}{10}xy+\frac{3\times 3}{4\times 4}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\times 3}{4\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2\left(-2\right)}{5\times 5}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{2}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{-4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{2\left(-2\right)}{5\times 5}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Fraction \frac{-4}{25} can be rewritten as -\frac{4}{25} by extracting the negative sign.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2\times 3}{5\times 4}yx
Multiply \frac{2}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{6}{20}yx
Do the multiplications in the fraction \frac{2\times 3}{5\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{3}{10}yx
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{9}{16}x^{2}-\frac{4}{25}y^{2}
Combine -\frac{3}{10}xy and \frac{3}{10}yx to get 0.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x\times \frac{3}{4}x+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Apply the distributive property by multiplying each term of \frac{3}{4}x+\frac{2}{5}y by each term of -\frac{2}{5}y+\frac{3}{4}x.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Multiply x and x to get x^{2}.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply y and y to get y^{2}.
\frac{3\left(-2\right)}{4\times 5}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-6}{20}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\left(-2\right)}{4\times 5}.
-\frac{3}{10}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
-\frac{3}{10}xy+\frac{3\times 3}{4\times 4}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\times 3}{4\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2\left(-2\right)}{5\times 5}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{2}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{-4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{2\left(-2\right)}{5\times 5}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Fraction \frac{-4}{25} can be rewritten as -\frac{4}{25} by extracting the negative sign.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2\times 3}{5\times 4}yx
Multiply \frac{2}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{6}{20}yx
Do the multiplications in the fraction \frac{2\times 3}{5\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{3}{10}yx
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{9}{16}x^{2}-\frac{4}{25}y^{2}
Combine -\frac{3}{10}xy and \frac{3}{10}yx to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}