Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x\times \frac{3}{4}x+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Apply the distributive property by multiplying each term of \frac{3}{4}x+\frac{2}{5}y by each term of -\frac{2}{5}y+\frac{3}{4}x.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Multiply x and x to get x^{2}.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply y and y to get y^{2}.
\frac{3\left(-2\right)}{4\times 5}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-6}{20}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\left(-2\right)}{4\times 5}.
-\frac{3}{10}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
-\frac{3}{10}xy+\frac{3\times 3}{4\times 4}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\times 3}{4\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2\left(-2\right)}{5\times 5}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{2}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{-4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{2\left(-2\right)}{5\times 5}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Fraction \frac{-4}{25} can be rewritten as -\frac{4}{25} by extracting the negative sign.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2\times 3}{5\times 4}yx
Multiply \frac{2}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{6}{20}yx
Do the multiplications in the fraction \frac{2\times 3}{5\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{3}{10}yx
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{9}{16}x^{2}-\frac{4}{25}y^{2}
Combine -\frac{3}{10}xy and \frac{3}{10}yx to get 0.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x\times \frac{3}{4}x+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Apply the distributive property by multiplying each term of \frac{3}{4}x+\frac{2}{5}y by each term of -\frac{2}{5}y+\frac{3}{4}x.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y\left(-\frac{2}{5}\right)y+\frac{2}{5}y\times \frac{3}{4}x
Multiply x and x to get x^{2}.
\frac{3}{4}x\left(-\frac{2}{5}\right)y+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply y and y to get y^{2}.
\frac{3\left(-2\right)}{4\times 5}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-6}{20}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\left(-2\right)}{4\times 5}.
-\frac{3}{10}xy+\frac{3}{4}x^{2}\times \frac{3}{4}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
-\frac{3}{10}xy+\frac{3\times 3}{4\times 4}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{3}{4} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2}{5}y^{2}\left(-\frac{2}{5}\right)+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{3\times 3}{4\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{2\left(-2\right)}{5\times 5}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Multiply \frac{2}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}+\frac{-4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Do the multiplications in the fraction \frac{2\left(-2\right)}{5\times 5}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2}{5}y\times \frac{3}{4}x
Fraction \frac{-4}{25} can be rewritten as -\frac{4}{25} by extracting the negative sign.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{2\times 3}{5\times 4}yx
Multiply \frac{2}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{6}{20}yx
Do the multiplications in the fraction \frac{2\times 3}{5\times 4}.
-\frac{3}{10}xy+\frac{9}{16}x^{2}-\frac{4}{25}y^{2}+\frac{3}{10}yx
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{9}{16}x^{2}-\frac{4}{25}y^{2}
Combine -\frac{3}{10}xy and \frac{3}{10}yx to get 0.