( \frac { 3 } { 4 } m ^ { 4 } n ^ { 2 } ) ( - \frac { 5 } { 3 } m n ) ( \frac { 12 } { 15 } m ^ { 2 } n ^ { 3 }
Evaluate
-n^{6}m^{7}
Differentiate w.r.t. m
-7\left(mn\right)^{6}
Share
Copied to clipboard
\frac{3}{4}m^{5}n^{2}\left(-\frac{5}{3}\right)n\times \frac{12}{15}m^{2}n^{3}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{3}{4}m^{7}n^{2}\left(-\frac{5}{3}\right)n\times \frac{12}{15}n^{3}
To multiply powers of the same base, add their exponents. Add 5 and 2 to get 7.
\frac{3}{4}m^{7}n^{3}\left(-\frac{5}{3}\right)\times \frac{12}{15}n^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{3}{4}m^{7}n^{6}\left(-\frac{5}{3}\right)\times \frac{12}{15}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
-\frac{5}{4}m^{7}n^{6}\times \frac{12}{15}
Multiply \frac{3}{4} and -\frac{5}{3} to get -\frac{5}{4}.
-\frac{5}{4}m^{7}n^{6}\times \frac{4}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
-m^{7}n^{6}
Multiply -\frac{5}{4} and \frac{4}{5} to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}