Evaluate
\frac{118}{171}\approx 0.69005848
Factor
\frac{2 \cdot 59}{3 ^ {2} \cdot 19} = 0.6900584795321637
Share
Copied to clipboard
\frac{\frac{9}{12}-\frac{4}{12}}{\frac{7}{2}+\frac{1}{4}}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{\frac{9-4}{12}}{\frac{7}{2}+\frac{1}{4}}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Since \frac{9}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{12}}{\frac{7}{2}+\frac{1}{4}}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Subtract 4 from 9 to get 5.
\frac{\frac{5}{12}}{\frac{14}{4}+\frac{1}{4}}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Least common multiple of 2 and 4 is 4. Convert \frac{7}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{\frac{5}{12}}{\frac{14+1}{4}}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Since \frac{14}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{12}}{\frac{15}{4}}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Add 14 and 1 to get 15.
\frac{5}{12}\times \frac{4}{15}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Divide \frac{5}{12} by \frac{15}{4} by multiplying \frac{5}{12} by the reciprocal of \frac{15}{4}.
\frac{5\times 4}{12\times 15}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Multiply \frac{5}{12} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{180}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Do the multiplications in the fraction \frac{5\times 4}{12\times 15}.
\frac{1}{9}+\frac{\frac{7}{12}+\frac{1}{3}}{\frac{5}{4}+\frac{1}{3}}
Reduce the fraction \frac{20}{180} to lowest terms by extracting and canceling out 20.
\frac{1}{9}+\frac{\frac{7}{12}+\frac{4}{12}}{\frac{5}{4}+\frac{1}{3}}
Least common multiple of 12 and 3 is 12. Convert \frac{7}{12} and \frac{1}{3} to fractions with denominator 12.
\frac{1}{9}+\frac{\frac{7+4}{12}}{\frac{5}{4}+\frac{1}{3}}
Since \frac{7}{12} and \frac{4}{12} have the same denominator, add them by adding their numerators.
\frac{1}{9}+\frac{\frac{11}{12}}{\frac{5}{4}+\frac{1}{3}}
Add 7 and 4 to get 11.
\frac{1}{9}+\frac{\frac{11}{12}}{\frac{15}{12}+\frac{4}{12}}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{1}{9}+\frac{\frac{11}{12}}{\frac{15+4}{12}}
Since \frac{15}{12} and \frac{4}{12} have the same denominator, add them by adding their numerators.
\frac{1}{9}+\frac{\frac{11}{12}}{\frac{19}{12}}
Add 15 and 4 to get 19.
\frac{1}{9}+\frac{11}{12}\times \frac{12}{19}
Divide \frac{11}{12} by \frac{19}{12} by multiplying \frac{11}{12} by the reciprocal of \frac{19}{12}.
\frac{1}{9}+\frac{11\times 12}{12\times 19}
Multiply \frac{11}{12} times \frac{12}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{9}+\frac{11}{19}
Cancel out 12 in both numerator and denominator.
\frac{19}{171}+\frac{99}{171}
Least common multiple of 9 and 19 is 171. Convert \frac{1}{9} and \frac{11}{19} to fractions with denominator 171.
\frac{19+99}{171}
Since \frac{19}{171} and \frac{99}{171} have the same denominator, add them by adding their numerators.
\frac{118}{171}
Add 19 and 99 to get 118.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}