Evaluate
\frac{\left(3∂-10\right)\left(3d+10\right)}{4}
Expand
\frac{9d∂}{4}+\frac{15∂}{2}-\frac{15d}{2}-25
Share
Copied to clipboard
\frac{3}{2}d\times \frac{3}{2}∂+\frac{3}{2}d\left(-5\right)+5\times \frac{3}{2}∂-25
Apply the distributive property by multiplying each term of \frac{3}{2}d+5 by each term of \frac{3}{2}∂-5.
\frac{3\times 3}{2\times 2}d∂+\frac{3}{2}d\left(-5\right)+5\times \frac{3}{2}∂-25
Multiply \frac{3}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{4}d∂+\frac{3}{2}d\left(-5\right)+5\times \frac{3}{2}∂-25
Do the multiplications in the fraction \frac{3\times 3}{2\times 2}.
\frac{9}{4}d∂+\frac{3\left(-5\right)}{2}d+5\times \frac{3}{2}∂-25
Express \frac{3}{2}\left(-5\right) as a single fraction.
\frac{9}{4}d∂+\frac{-15}{2}d+5\times \frac{3}{2}∂-25
Multiply 3 and -5 to get -15.
\frac{9}{4}d∂-\frac{15}{2}d+5\times \frac{3}{2}∂-25
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
\frac{9}{4}d∂-\frac{15}{2}d+\frac{5\times 3}{2}∂-25
Express 5\times \frac{3}{2} as a single fraction.
\frac{9}{4}d∂-\frac{15}{2}d+\frac{15}{2}∂-25
Multiply 5 and 3 to get 15.
\frac{3}{2}d\times \frac{3}{2}∂+\frac{3}{2}d\left(-5\right)+5\times \frac{3}{2}∂-25
Apply the distributive property by multiplying each term of \frac{3}{2}d+5 by each term of \frac{3}{2}∂-5.
\frac{3\times 3}{2\times 2}d∂+\frac{3}{2}d\left(-5\right)+5\times \frac{3}{2}∂-25
Multiply \frac{3}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{4}d∂+\frac{3}{2}d\left(-5\right)+5\times \frac{3}{2}∂-25
Do the multiplications in the fraction \frac{3\times 3}{2\times 2}.
\frac{9}{4}d∂+\frac{3\left(-5\right)}{2}d+5\times \frac{3}{2}∂-25
Express \frac{3}{2}\left(-5\right) as a single fraction.
\frac{9}{4}d∂+\frac{-15}{2}d+5\times \frac{3}{2}∂-25
Multiply 3 and -5 to get -15.
\frac{9}{4}d∂-\frac{15}{2}d+5\times \frac{3}{2}∂-25
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
\frac{9}{4}d∂-\frac{15}{2}d+\frac{5\times 3}{2}∂-25
Express 5\times \frac{3}{2} as a single fraction.
\frac{9}{4}d∂-\frac{15}{2}d+\frac{15}{2}∂-25
Multiply 5 and 3 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}