Evaluate
-\frac{3v^{2}}{2}+x^{2}
Expand
-\frac{3v^{2}}{2}+x^{2}
Graph
Share
Copied to clipboard
\left(\frac{3+x}{2}\right)^{2}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{3}{2} and \frac{x}{2} have the same denominator, add them by adding their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To raise \frac{3+x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-\frac{3\times 2}{2}\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-3\times 2}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-6}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in x-3\times 2.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{2\times 2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply \frac{x}{2} times \frac{x-6}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply 2 and 2 to get 4.
\frac{\left(3+x\right)^{2}}{4}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(3+x\right)^{2}-x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{\left(3+x\right)^{2}}{4} and \frac{x\left(x-6\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{9+6x+x^{2}-x^{2}+6x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in \left(3+x\right)^{2}-x\left(x-6\right).
\frac{9+12x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Combine like terms in 9+6x+x^{2}-x^{2}+6x.
\frac{9+12x}{4}+x^{2}-\frac{9}{4}-\frac{3}{2}v^{2}
Consider \left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{3}{2}.
\frac{9+12x-9}{4}+x^{2}-\frac{3}{2}v^{2}
Since \frac{9+12x}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{12x}{4}+x^{2}-\frac{3}{2}v^{2}
Combine like terms in 9+12x-9.
3x+x^{2}-\frac{3}{2}v^{2}
Divide 12x by 4 to get 3x.
\left(\frac{3+x}{2}\right)^{2}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{3}{2} and \frac{x}{2} have the same denominator, add them by adding their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To raise \frac{3+x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-\frac{3\times 2}{2}\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-3\times 2}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-6}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in x-3\times 2.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{2\times 2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply \frac{x}{2} times \frac{x-6}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply 2 and 2 to get 4.
\frac{\left(3+x\right)^{2}}{4}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(3+x\right)^{2}-x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{\left(3+x\right)^{2}}{4} and \frac{x\left(x-6\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{9+6x+x^{2}-x^{2}+6x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in \left(3+x\right)^{2}-x\left(x-6\right).
\frac{9+12x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Combine like terms in 9+6x+x^{2}-x^{2}+6x.
\frac{9+12x}{4}+x^{2}-\frac{9}{4}-\frac{3}{2}v^{2}
Consider \left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{3}{2}.
\frac{9+12x-9}{4}+x^{2}-\frac{3}{2}v^{2}
Since \frac{9+12x}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{12x}{4}+x^{2}-\frac{3}{2}v^{2}
Combine like terms in 9+12x-9.
3x+x^{2}-\frac{3}{2}v^{2}
Divide 12x by 4 to get 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}