Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{3+x}{2}\right)^{2}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{3}{2} and \frac{x}{2} have the same denominator, add them by adding their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To raise \frac{3+x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-\frac{3\times 2}{2}\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-3\times 2}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-6}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in x-3\times 2.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{2\times 2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply \frac{x}{2} times \frac{x-6}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply 2 and 2 to get 4.
\frac{\left(3+x\right)^{2}}{4}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(3+x\right)^{2}-x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{\left(3+x\right)^{2}}{4} and \frac{x\left(x-6\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{9+6x+x^{2}-x^{2}+6x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in \left(3+x\right)^{2}-x\left(x-6\right).
\frac{9+12x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Combine like terms in 9+6x+x^{2}-x^{2}+6x.
\frac{9+12x}{4}+x^{2}-\frac{9}{4}-\frac{3}{2}v^{2}
Consider \left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{3}{2}.
\frac{9+12x-9}{4}+x^{2}-\frac{3}{2}v^{2}
Since \frac{9+12x}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{12x}{4}+x^{2}-\frac{3}{2}v^{2}
Combine like terms in 9+12x-9.
3x+x^{2}-\frac{3}{2}v^{2}
Divide 12x by 4 to get 3x.
\left(\frac{3+x}{2}\right)^{2}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{3}{2} and \frac{x}{2} have the same denominator, add them by adding their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-3\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To raise \frac{3+x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\left(\frac{x}{2}-\frac{3\times 2}{2}\right)+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-3\times 2}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x}{2}\times \frac{x-6}{2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in x-3\times 2.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{2\times 2}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply \frac{x}{2} times \frac{x-6}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3+x\right)^{2}}{2^{2}}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Multiply 2 and 2 to get 4.
\frac{\left(3+x\right)^{2}}{4}-\frac{x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(3+x\right)^{2}-x\left(x-6\right)}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Since \frac{\left(3+x\right)^{2}}{4} and \frac{x\left(x-6\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{9+6x+x^{2}-x^{2}+6x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Do the multiplications in \left(3+x\right)^{2}-x\left(x-6\right).
\frac{9+12x}{4}+\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)-\frac{3}{2}v^{2}
Combine like terms in 9+6x+x^{2}-x^{2}+6x.
\frac{9+12x}{4}+x^{2}-\frac{9}{4}-\frac{3}{2}v^{2}
Consider \left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{3}{2}.
\frac{9+12x-9}{4}+x^{2}-\frac{3}{2}v^{2}
Since \frac{9+12x}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{12x}{4}+x^{2}-\frac{3}{2}v^{2}
Combine like terms in 9+12x-9.
3x+x^{2}-\frac{3}{2}v^{2}
Divide 12x by 4 to get 3x.