Evaluate
\frac{31}{42}\approx 0.738095238
Factor
\frac{31}{2 \cdot 3 \cdot 7} = 0.7380952380952381
Share
Copied to clipboard
\frac{\frac{3-7}{2}-\frac{5}{6}+\frac{1}{4}}{-4+\frac{2}{3}-\frac{1}{6}}
Since \frac{3}{2} and \frac{7}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4}{2}-\frac{5}{6}+\frac{1}{4}}{-4+\frac{2}{3}-\frac{1}{6}}
Subtract 7 from 3 to get -4.
\frac{-2-\frac{5}{6}+\frac{1}{4}}{-4+\frac{2}{3}-\frac{1}{6}}
Divide -4 by 2 to get -2.
\frac{-\frac{12}{6}-\frac{5}{6}+\frac{1}{4}}{-4+\frac{2}{3}-\frac{1}{6}}
Convert -2 to fraction -\frac{12}{6}.
\frac{\frac{-12-5}{6}+\frac{1}{4}}{-4+\frac{2}{3}-\frac{1}{6}}
Since -\frac{12}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{17}{6}+\frac{1}{4}}{-4+\frac{2}{3}-\frac{1}{6}}
Subtract 5 from -12 to get -17.
\frac{-\frac{34}{12}+\frac{3}{12}}{-4+\frac{2}{3}-\frac{1}{6}}
Least common multiple of 6 and 4 is 12. Convert -\frac{17}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{\frac{-34+3}{12}}{-4+\frac{2}{3}-\frac{1}{6}}
Since -\frac{34}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{-\frac{31}{12}}{-4+\frac{2}{3}-\frac{1}{6}}
Add -34 and 3 to get -31.
\frac{-\frac{31}{12}}{-\frac{12}{3}+\frac{2}{3}-\frac{1}{6}}
Convert -4 to fraction -\frac{12}{3}.
\frac{-\frac{31}{12}}{\frac{-12+2}{3}-\frac{1}{6}}
Since -\frac{12}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{-\frac{31}{12}}{-\frac{10}{3}-\frac{1}{6}}
Add -12 and 2 to get -10.
\frac{-\frac{31}{12}}{-\frac{20}{6}-\frac{1}{6}}
Least common multiple of 3 and 6 is 6. Convert -\frac{10}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{-\frac{31}{12}}{\frac{-20-1}{6}}
Since -\frac{20}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{31}{12}}{\frac{-21}{6}}
Subtract 1 from -20 to get -21.
\frac{-\frac{31}{12}}{-\frac{7}{2}}
Reduce the fraction \frac{-21}{6} to lowest terms by extracting and canceling out 3.
-\frac{31}{12}\left(-\frac{2}{7}\right)
Divide -\frac{31}{12} by -\frac{7}{2} by multiplying -\frac{31}{12} by the reciprocal of -\frac{7}{2}.
\frac{-31\left(-2\right)}{12\times 7}
Multiply -\frac{31}{12} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{62}{84}
Do the multiplications in the fraction \frac{-31\left(-2\right)}{12\times 7}.
\frac{31}{42}
Reduce the fraction \frac{62}{84} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}