Solve for x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Share
Copied to clipboard
\frac{3\left(-3\right)}{2}=2x
Express \frac{3}{2}\left(-3\right) as a single fraction.
\frac{-9}{2}=2x
Multiply 3 and -3 to get -9.
-\frac{9}{2}=2x
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
2x=-\frac{9}{2}
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\frac{9}{2}}{2}
Divide both sides by 2.
x=\frac{-9}{2\times 2}
Express \frac{-\frac{9}{2}}{2} as a single fraction.
x=\frac{-9}{4}
Multiply 2 and 2 to get 4.
x=-\frac{9}{4}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}