Evaluate
\frac{1}{9}\approx 0.111111111
Factor
\frac{1}{3 ^ {2}} = 0.1111111111111111
Share
Copied to clipboard
\frac{3}{2}\times \frac{2}{9}-\frac{2}{3}\times \frac{1}{3}
Divide \frac{3}{2} by \frac{9}{2} by multiplying \frac{3}{2} by the reciprocal of \frac{9}{2}.
\frac{3\times 2}{2\times 9}-\frac{2}{3}\times \frac{1}{3}
Multiply \frac{3}{2} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{9}-\frac{2}{3}\times \frac{1}{3}
Cancel out 2 in both numerator and denominator.
\frac{1}{3}-\frac{2}{3}\times \frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{3}+\frac{-2}{3\times 3}
Multiply -\frac{2}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\frac{-2}{9}
Do the multiplications in the fraction \frac{-2}{3\times 3}.
\frac{1}{3}-\frac{2}{9}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
\frac{3}{9}-\frac{2}{9}
Least common multiple of 3 and 9 is 9. Convert \frac{1}{3} and \frac{2}{9} to fractions with denominator 9.
\frac{3-2}{9}
Since \frac{3}{9} and \frac{2}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{9}
Subtract 2 from 3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}