( \frac { 3 } { 2 } + \frac { 4 } { 5 } - \frac { 1 } { 10 } ) : 4 + 0,5 : 0,25
Evaluate
2,55
Factor
\frac{3 \cdot 17}{5 \cdot 2 ^ {2}} = 2\frac{11}{20} = 2.55
Share
Copied to clipboard
\frac{\frac{15}{10}+\frac{8}{10}-\frac{1}{10}}{4}+\frac{0,5}{0,25}
Least common multiple of 2 and 5 is 10. Convert \frac{3}{2} and \frac{4}{5} to fractions with denominator 10.
\frac{\frac{15+8}{10}-\frac{1}{10}}{4}+\frac{0,5}{0,25}
Since \frac{15}{10} and \frac{8}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{10}-\frac{1}{10}}{4}+\frac{0,5}{0,25}
Add 15 and 8 to get 23.
\frac{\frac{23-1}{10}}{4}+\frac{0,5}{0,25}
Since \frac{23}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{22}{10}}{4}+\frac{0,5}{0,25}
Subtract 1 from 23 to get 22.
\frac{\frac{11}{5}}{4}+\frac{0,5}{0,25}
Reduce the fraction \frac{22}{10} to lowest terms by extracting and canceling out 2.
\frac{11}{5\times 4}+\frac{0,5}{0,25}
Express \frac{\frac{11}{5}}{4} as a single fraction.
\frac{11}{20}+\frac{0,5}{0,25}
Multiply 5 and 4 to get 20.
\frac{11}{20}+\frac{50}{25}
Expand \frac{0,5}{0,25} by multiplying both numerator and the denominator by 100.
\frac{11}{20}+2
Divide 50 by 25 to get 2.
\frac{11}{20}+\frac{40}{20}
Convert 2 to fraction \frac{40}{20}.
\frac{11+40}{20}
Since \frac{11}{20} and \frac{40}{20} have the same denominator, add them by adding their numerators.
\frac{51}{20}
Add 11 and 40 to get 51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}