Evaluate
\frac{21}{4}=5.25
Factor
\frac{3 \cdot 7}{2 ^ {2}} = 5\frac{1}{4} = 5.25
Share
Copied to clipboard
\frac{\left(\frac{3}{4}\right)^{-1}}{\frac{4}{3}}-\left(\frac{2^{-1}}{3^{-2}}+1\right)\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Calculate 2 to the power of 2 and get 4.
\frac{\frac{4}{3}}{\frac{4}{3}}-\left(\frac{2^{-1}}{3^{-2}}+1\right)\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Calculate \frac{3}{4} to the power of -1 and get \frac{4}{3}.
1-\left(\frac{2^{-1}}{3^{-2}}+1\right)\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Divide \frac{4}{3} by \frac{4}{3} to get 1.
1-\left(\frac{\frac{1}{2}}{3^{-2}}+1\right)\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
1-\left(\frac{\frac{1}{2}}{\frac{1}{9}}+1\right)\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
1-\left(\frac{1}{2}\times 9+1\right)\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Divide \frac{1}{2} by \frac{1}{9} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{9}.
1-\left(\frac{9}{2}+1\right)\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
1-\frac{11}{2}\times \frac{3}{-4}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Add \frac{9}{2} and 1 to get \frac{11}{2}.
1-\frac{11}{2}\left(-\frac{3}{4}\right)-\frac{2^{-3}}{\left(-1\right)^{2021}}
Fraction \frac{3}{-4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
1-\left(-\frac{33}{8}\right)-\frac{2^{-3}}{\left(-1\right)^{2021}}
Multiply \frac{11}{2} and -\frac{3}{4} to get -\frac{33}{8}.
1+\frac{33}{8}-\frac{2^{-3}}{\left(-1\right)^{2021}}
The opposite of -\frac{33}{8} is \frac{33}{8}.
\frac{41}{8}-\frac{2^{-3}}{\left(-1\right)^{2021}}
Add 1 and \frac{33}{8} to get \frac{41}{8}.
\frac{41}{8}-\frac{\frac{1}{8}}{\left(-1\right)^{2021}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{41}{8}-\frac{\frac{1}{8}}{-1}
Calculate -1 to the power of 2021 and get -1.
\frac{41}{8}-\frac{1}{8\left(-1\right)}
Express \frac{\frac{1}{8}}{-1} as a single fraction.
\frac{41}{8}-\frac{1}{-8}
Multiply 8 and -1 to get -8.
\frac{41}{8}-\left(-\frac{1}{8}\right)
Fraction \frac{1}{-8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
\frac{41}{8}+\frac{1}{8}
The opposite of -\frac{1}{8} is \frac{1}{8}.
\frac{21}{4}
Add \frac{41}{8} and \frac{1}{8} to get \frac{21}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}