Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{\frac{9}{30}+\frac{14}{30}+\frac{4}{45}}{\frac{11}{30}}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Least common multiple of 10 and 15 is 30. Convert \frac{3}{10} and \frac{7}{15} to fractions with denominator 30.
\frac{\frac{9+14}{30}+\frac{4}{45}}{\frac{11}{30}}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Since \frac{9}{30} and \frac{14}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{30}+\frac{4}{45}}{\frac{11}{30}}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Add 9 and 14 to get 23.
\frac{\frac{69}{90}+\frac{8}{90}}{\frac{11}{30}}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Least common multiple of 30 and 45 is 90. Convert \frac{23}{30} and \frac{4}{45} to fractions with denominator 90.
\frac{\frac{69+8}{90}}{\frac{11}{30}}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Since \frac{69}{90} and \frac{8}{90} have the same denominator, add them by adding their numerators.
\frac{\frac{77}{90}}{\frac{11}{30}}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Add 69 and 8 to get 77.
\frac{77}{90}\times \frac{30}{11}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Divide \frac{77}{90} by \frac{11}{30} by multiplying \frac{77}{90} by the reciprocal of \frac{11}{30}.
\frac{77\times 30}{90\times 11}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Multiply \frac{77}{90} times \frac{30}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{2310}{990}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Do the multiplications in the fraction \frac{77\times 30}{90\times 11}.
\frac{7}{3}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Reduce the fraction \frac{2310}{990} to lowest terms by extracting and canceling out 330.
\frac{28}{12}+\frac{7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Least common multiple of 3 and 12 is 12. Convert \frac{7}{3} and \frac{7}{12} to fractions with denominator 12.
\frac{28+7}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Since \frac{28}{12} and \frac{7}{12} have the same denominator, add them by adding their numerators.
\frac{35}{12}-\frac{1}{4}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Add 28 and 7 to get 35.
\frac{35}{12}-\frac{3}{12}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Least common multiple of 12 and 4 is 12. Convert \frac{35}{12} and \frac{1}{4} to fractions with denominator 12.
\frac{35-3}{12}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Since \frac{35}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{12}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Subtract 3 from 35 to get 32.
\frac{8}{3}-\frac{\frac{31}{35}-\frac{5}{42}}{\frac{23}{15}}-\frac{1}{6}
Reduce the fraction \frac{32}{12} to lowest terms by extracting and canceling out 4.
\frac{8}{3}-\frac{\frac{186}{210}-\frac{25}{210}}{\frac{23}{15}}-\frac{1}{6}
Least common multiple of 35 and 42 is 210. Convert \frac{31}{35} and \frac{5}{42} to fractions with denominator 210.
\frac{8}{3}-\frac{\frac{186-25}{210}}{\frac{23}{15}}-\frac{1}{6}
Since \frac{186}{210} and \frac{25}{210} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{3}-\frac{\frac{161}{210}}{\frac{23}{15}}-\frac{1}{6}
Subtract 25 from 186 to get 161.
\frac{8}{3}-\frac{\frac{23}{30}}{\frac{23}{15}}-\frac{1}{6}
Reduce the fraction \frac{161}{210} to lowest terms by extracting and canceling out 7.
\frac{8}{3}-\frac{23}{30}\times \frac{15}{23}-\frac{1}{6}
Divide \frac{23}{30} by \frac{23}{15} by multiplying \frac{23}{30} by the reciprocal of \frac{23}{15}.
\frac{8}{3}-\frac{23\times 15}{30\times 23}-\frac{1}{6}
Multiply \frac{23}{30} times \frac{15}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{3}-\frac{15}{30}-\frac{1}{6}
Cancel out 23 in both numerator and denominator.
\frac{8}{3}-\frac{1}{2}-\frac{1}{6}
Reduce the fraction \frac{15}{30} to lowest terms by extracting and canceling out 15.
\frac{16}{6}-\frac{3}{6}-\frac{1}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{8}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{16-3}{6}-\frac{1}{6}
Since \frac{16}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{6}-\frac{1}{6}
Subtract 3 from 16 to get 13.
\frac{13-1}{6}
Since \frac{13}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{6}
Subtract 1 from 13 to get 12.
2
Divide 12 by 6 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}