Evaluate
r
Differentiate w.r.t. r
1
Quiz
Algebra
5 problems similar to:
( \frac { 3 } { 1 + a } - 1 ) ( \frac { 3 } { 2 - a } - 1 ) \quad r )
Share
Copied to clipboard
\left(\frac{3}{1+a}-\frac{1+a}{1+a}\right)\left(\frac{3}{2-a}-1\right)r
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+a}{1+a}.
\frac{3-\left(1+a\right)}{1+a}\left(\frac{3}{2-a}-1\right)r
Since \frac{3}{1+a} and \frac{1+a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{3-1-a}{1+a}\left(\frac{3}{2-a}-1\right)r
Do the multiplications in 3-\left(1+a\right).
\frac{2-a}{1+a}\left(\frac{3}{2-a}-1\right)r
Combine like terms in 3-1-a.
\frac{2-a}{1+a}\left(\frac{3}{2-a}-\frac{2-a}{2-a}\right)r
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2-a}{2-a}.
\frac{2-a}{1+a}\times \frac{3-\left(2-a\right)}{2-a}r
Since \frac{3}{2-a} and \frac{2-a}{2-a} have the same denominator, subtract them by subtracting their numerators.
\frac{2-a}{1+a}\times \frac{3-2+a}{2-a}r
Do the multiplications in 3-\left(2-a\right).
\frac{2-a}{1+a}\times \frac{1+a}{2-a}r
Combine like terms in 3-2+a.
\frac{\left(2-a\right)\left(1+a\right)}{\left(1+a\right)\left(2-a\right)}r
Multiply \frac{2-a}{1+a} times \frac{1+a}{2-a} by multiplying numerator times numerator and denominator times denominator.
1r
Cancel out \left(a+1\right)\left(-a+2\right) in both numerator and denominator.
r
For any term t, t\times 1=t and 1t=t.
\frac{\mathrm{d}}{\mathrm{d}r}(\left(\frac{3}{1+a}-\frac{1+a}{1+a}\right)\left(\frac{3}{2-a}-1\right)r)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+a}{1+a}.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{3-\left(1+a\right)}{1+a}\left(\frac{3}{2-a}-1\right)r)
Since \frac{3}{1+a} and \frac{1+a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{3-1-a}{1+a}\left(\frac{3}{2-a}-1\right)r)
Do the multiplications in 3-\left(1+a\right).
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\left(\frac{3}{2-a}-1\right)r)
Combine like terms in 3-1-a.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\left(\frac{3}{2-a}-\frac{2-a}{2-a}\right)r)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2-a}{2-a}.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\times \frac{3-\left(2-a\right)}{2-a}r)
Since \frac{3}{2-a} and \frac{2-a}{2-a} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\times \frac{3-2+a}{2-a}r)
Do the multiplications in 3-\left(2-a\right).
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\times \frac{1+a}{2-a}r)
Combine like terms in 3-2+a.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{\left(2-a\right)\left(1+a\right)}{\left(1+a\right)\left(2-a\right)}r)
Multiply \frac{2-a}{1+a} times \frac{1+a}{2-a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}r}(1r)
Cancel out \left(a+1\right)\left(-a+2\right) in both numerator and denominator.
r^{1-1}
The derivative of ax^{n} is nax^{n-1}.
r^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}