Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. r
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{1+a}-\frac{1+a}{1+a}\right)\left(\frac{3}{2-a}-1\right)r
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+a}{1+a}.
\frac{3-\left(1+a\right)}{1+a}\left(\frac{3}{2-a}-1\right)r
Since \frac{3}{1+a} and \frac{1+a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{3-1-a}{1+a}\left(\frac{3}{2-a}-1\right)r
Do the multiplications in 3-\left(1+a\right).
\frac{2-a}{1+a}\left(\frac{3}{2-a}-1\right)r
Combine like terms in 3-1-a.
\frac{2-a}{1+a}\left(\frac{3}{2-a}-\frac{2-a}{2-a}\right)r
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2-a}{2-a}.
\frac{2-a}{1+a}\times \frac{3-\left(2-a\right)}{2-a}r
Since \frac{3}{2-a} and \frac{2-a}{2-a} have the same denominator, subtract them by subtracting their numerators.
\frac{2-a}{1+a}\times \frac{3-2+a}{2-a}r
Do the multiplications in 3-\left(2-a\right).
\frac{2-a}{1+a}\times \frac{1+a}{2-a}r
Combine like terms in 3-2+a.
\frac{\left(2-a\right)\left(1+a\right)}{\left(1+a\right)\left(2-a\right)}r
Multiply \frac{2-a}{1+a} times \frac{1+a}{2-a} by multiplying numerator times numerator and denominator times denominator.
1r
Cancel out \left(a+1\right)\left(-a+2\right) in both numerator and denominator.
r
For any term t, t\times 1=t and 1t=t.
\frac{\mathrm{d}}{\mathrm{d}r}(\left(\frac{3}{1+a}-\frac{1+a}{1+a}\right)\left(\frac{3}{2-a}-1\right)r)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+a}{1+a}.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{3-\left(1+a\right)}{1+a}\left(\frac{3}{2-a}-1\right)r)
Since \frac{3}{1+a} and \frac{1+a}{1+a} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{3-1-a}{1+a}\left(\frac{3}{2-a}-1\right)r)
Do the multiplications in 3-\left(1+a\right).
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\left(\frac{3}{2-a}-1\right)r)
Combine like terms in 3-1-a.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\left(\frac{3}{2-a}-\frac{2-a}{2-a}\right)r)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2-a}{2-a}.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\times \frac{3-\left(2-a\right)}{2-a}r)
Since \frac{3}{2-a} and \frac{2-a}{2-a} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\times \frac{3-2+a}{2-a}r)
Do the multiplications in 3-\left(2-a\right).
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2-a}{1+a}\times \frac{1+a}{2-a}r)
Combine like terms in 3-2+a.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{\left(2-a\right)\left(1+a\right)}{\left(1+a\right)\left(2-a\right)}r)
Multiply \frac{2-a}{1+a} times \frac{1+a}{2-a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}r}(1r)
Cancel out \left(a+1\right)\left(-a+2\right) in both numerator and denominator.
r^{1-1}
The derivative of ax^{n} is nax^{n-1}.
r^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.