Evaluate
\frac{231}{16}=14.4375
Factor
\frac{3 \cdot 7 \cdot 11}{2 ^ {4}} = 14\frac{7}{16} = 14.4375
Share
Copied to clipboard
-\frac{3}{4}\times \frac{5\times 4+2}{4}\times \frac{-7}{2}
Fraction \frac{3}{-4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{3}{4}\times \frac{20+2}{4}\times \frac{-7}{2}
Multiply 5 and 4 to get 20.
-\frac{3}{4}\times \frac{22}{4}\times \frac{-7}{2}
Add 20 and 2 to get 22.
-\frac{3}{4}\times \frac{11}{2}\times \frac{-7}{2}
Reduce the fraction \frac{22}{4} to lowest terms by extracting and canceling out 2.
\frac{-3\times 11}{4\times 2}\times \frac{-7}{2}
Multiply -\frac{3}{4} times \frac{11}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-33}{8}\times \frac{-7}{2}
Do the multiplications in the fraction \frac{-3\times 11}{4\times 2}.
-\frac{33}{8}\times \frac{-7}{2}
Fraction \frac{-33}{8} can be rewritten as -\frac{33}{8} by extracting the negative sign.
-\frac{33}{8}\left(-\frac{7}{2}\right)
Fraction \frac{-7}{2} can be rewritten as -\frac{7}{2} by extracting the negative sign.
\frac{-33\left(-7\right)}{8\times 2}
Multiply -\frac{33}{8} times -\frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{231}{16}
Do the multiplications in the fraction \frac{-33\left(-7\right)}{8\times 2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}