Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{2}\right)^{2}}{5^{2}}+\left(\frac{5\sqrt{2}}{20}\right)^{2}
To raise \frac{3\sqrt{2}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3\sqrt{2}\right)^{2}}{5^{2}}+\left(\frac{1}{4}\sqrt{2}\right)^{2}
Divide 5\sqrt{2} by 20 to get \frac{1}{4}\sqrt{2}.
\frac{\left(3\sqrt{2}\right)^{2}}{5^{2}}+\left(\frac{1}{4}\right)^{2}\left(\sqrt{2}\right)^{2}
Expand \left(\frac{1}{4}\sqrt{2}\right)^{2}.
\frac{\left(3\sqrt{2}\right)^{2}}{5^{2}}+\frac{1}{16}\left(\sqrt{2}\right)^{2}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\left(3\sqrt{2}\right)^{2}}{5^{2}}+\frac{1}{16}\times 2
The square of \sqrt{2} is 2.
\frac{\left(3\sqrt{2}\right)^{2}}{5^{2}}+\frac{1}{8}
Multiply \frac{1}{16} and 2 to get \frac{1}{8}.
\frac{8\times \left(3\sqrt{2}\right)^{2}}{200}+\frac{25}{200}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5^{2} and 8 is 200. Multiply \frac{\left(3\sqrt{2}\right)^{2}}{5^{2}} times \frac{8}{8}. Multiply \frac{1}{8} times \frac{25}{25}.
\frac{8\times \left(3\sqrt{2}\right)^{2}+25}{200}
Since \frac{8\times \left(3\sqrt{2}\right)^{2}}{200} and \frac{25}{200} have the same denominator, add them by adding their numerators.
\frac{3^{2}\left(\sqrt{2}\right)^{2}}{5^{2}}+\frac{1}{8}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{9\left(\sqrt{2}\right)^{2}}{5^{2}}+\frac{1}{8}
Calculate 3 to the power of 2 and get 9.
\frac{9\times 2}{5^{2}}+\frac{1}{8}
The square of \sqrt{2} is 2.
\frac{18}{5^{2}}+\frac{1}{8}
Multiply 9 and 2 to get 18.
\frac{18}{25}+\frac{1}{8}
Calculate 5 to the power of 2 and get 25.
\frac{169}{200}
Add \frac{18}{25} and \frac{1}{8} to get \frac{169}{200}.