Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3\sqrt{15}}{4}-2\sqrt{3}}{\frac{\sqrt{3}}{2}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\frac{3\sqrt{15}}{4}+\frac{4\left(-2\right)\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{3} times \frac{4}{4}.
\frac{\frac{3\sqrt{15}+4\left(-2\right)\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}}
Since \frac{3\sqrt{15}}{4} and \frac{4\left(-2\right)\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{3\sqrt{15}-8\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}}
Do the multiplications in 3\sqrt{15}+4\left(-2\right)\sqrt{3}.
\frac{\left(3\sqrt{15}-8\sqrt{3}\right)\times 2}{4\sqrt{3}}
Divide \frac{3\sqrt{15}-8\sqrt{3}}{4} by \frac{\sqrt{3}}{2} by multiplying \frac{3\sqrt{15}-8\sqrt{3}}{4} by the reciprocal of \frac{\sqrt{3}}{2}.
\frac{-8\sqrt{3}+3\sqrt{15}}{2\sqrt{3}}
Cancel out 2 in both numerator and denominator.
\frac{\left(-8\sqrt{3}+3\sqrt{15}\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{-8\sqrt{3}+3\sqrt{15}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(-8\sqrt{3}+3\sqrt{15}\right)\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{\left(-8\sqrt{3}+3\sqrt{15}\right)\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\frac{-8\left(\sqrt{3}\right)^{2}+3\sqrt{15}\sqrt{3}}{6}
Use the distributive property to multiply -8\sqrt{3}+3\sqrt{15} by \sqrt{3}.
\frac{-8\times 3+3\sqrt{15}\sqrt{3}}{6}
The square of \sqrt{3} is 3.
\frac{-24+3\sqrt{15}\sqrt{3}}{6}
Multiply -8 and 3 to get -24.
\frac{-24+3\sqrt{3}\sqrt{5}\sqrt{3}}{6}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{-24+3\times 3\sqrt{5}}{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-24+9\sqrt{5}}{6}
Multiply 3 and 3 to get 9.