Evaluate
37-12\sqrt{3}\approx 16.215390309
Expand
37-12\sqrt{3}
Share
Copied to clipboard
\frac{\left(3+2\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{10-3\sqrt{3}}{2}\right)^{2}
To raise \frac{3+2\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+2\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{10-3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+2\sqrt{3}\right)^{2}+\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{\left(3+2\sqrt{3}\right)^{2}}{2^{2}} and \frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{9+12\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{3}\right)^{2}.
\frac{9+12\sqrt{3}+4\times 3}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{9+12\sqrt{3}+12}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Multiply 4 and 3 to get 12.
\frac{21+12\sqrt{3}}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Add 9 and 12 to get 21.
\frac{21+12\sqrt{3}}{4}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{21+12\sqrt{3}}{4}+\frac{100-60\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-3\sqrt{3}\right)^{2}.
\frac{21+12\sqrt{3}}{4}+\frac{100-60\sqrt{3}+9\times 3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{21+12\sqrt{3}}{4}+\frac{100-60\sqrt{3}+27}{2^{2}}
Multiply 9 and 3 to get 27.
\frac{21+12\sqrt{3}}{4}+\frac{127-60\sqrt{3}}{2^{2}}
Add 100 and 27 to get 127.
\frac{21+12\sqrt{3}}{4}+\frac{127-60\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{21+12\sqrt{3}+127-60\sqrt{3}}{4}
Since \frac{21+12\sqrt{3}}{4} and \frac{127-60\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
\frac{148-48\sqrt{3}}{4}
Do the calculations in 21+12\sqrt{3}+127-60\sqrt{3}.
37-12\sqrt{3}
Divide each term of 148-48\sqrt{3} by 4 to get 37-12\sqrt{3}.
\frac{\left(3+2\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{10-3\sqrt{3}}{2}\right)^{2}
To raise \frac{3+2\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+2\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{10-3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+2\sqrt{3}\right)^{2}+\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{\left(3+2\sqrt{3}\right)^{2}}{2^{2}} and \frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{9+12\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{3}\right)^{2}.
\frac{9+12\sqrt{3}+4\times 3}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{9+12\sqrt{3}+12}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Multiply 4 and 3 to get 12.
\frac{21+12\sqrt{3}}{2^{2}}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Add 9 and 12 to get 21.
\frac{21+12\sqrt{3}}{4}+\frac{\left(10-3\sqrt{3}\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{21+12\sqrt{3}}{4}+\frac{100-60\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-3\sqrt{3}\right)^{2}.
\frac{21+12\sqrt{3}}{4}+\frac{100-60\sqrt{3}+9\times 3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{21+12\sqrt{3}}{4}+\frac{100-60\sqrt{3}+27}{2^{2}}
Multiply 9 and 3 to get 27.
\frac{21+12\sqrt{3}}{4}+\frac{127-60\sqrt{3}}{2^{2}}
Add 100 and 27 to get 127.
\frac{21+12\sqrt{3}}{4}+\frac{127-60\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{21+12\sqrt{3}+127-60\sqrt{3}}{4}
Since \frac{21+12\sqrt{3}}{4} and \frac{127-60\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
\frac{148-48\sqrt{3}}{4}
Do the calculations in 21+12\sqrt{3}+127-60\sqrt{3}.
37-12\sqrt{3}
Divide each term of 148-48\sqrt{3} by 4 to get 37-12\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}