Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-3\times \left(\frac{3+\sqrt{6}}{3}\right)^{2}+\frac{3\sqrt{6}}{3}+1
To raise \frac{3+\sqrt{6}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-3\times \frac{\left(3+\sqrt{6}\right)^{2}}{3^{2}}+\frac{3\sqrt{6}}{3}+1
To raise \frac{3+\sqrt{6}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-\frac{3\left(3+\sqrt{6}\right)^{2}}{3^{2}}+\frac{3\sqrt{6}}{3}+1
Express 3\times \frac{\left(3+\sqrt{6}\right)^{2}}{3^{2}} as a single fraction.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-\frac{\left(\sqrt{6}+3\right)^{2}}{3}+\frac{3\sqrt{6}}{3}+1
Cancel out 3 in both numerator and denominator.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-\frac{\left(\sqrt{6}\right)^{2}+6\sqrt{6}+9}{3}+\frac{3\sqrt{6}}{3}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+3\right)^{2}.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-\frac{6+6\sqrt{6}+9}{3}+\frac{3\sqrt{6}}{3}+1
The square of \sqrt{6} is 6.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-\frac{15+6\sqrt{6}}{3}+\frac{3\sqrt{6}}{3}+1
Add 6 and 9 to get 15.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-\left(5+2\sqrt{6}\right)+\frac{3\sqrt{6}}{3}+1
Divide each term of 15+6\sqrt{6} by 3 to get 5+2\sqrt{6}.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}-5-2\sqrt{6}+\frac{3\sqrt{6}}{3}+1
To find the opposite of 5+2\sqrt{6}, find the opposite of each term.
\frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}}+\frac{\left(-5-2\sqrt{6}\right)\times 3^{3}}{3^{3}}+\frac{3\sqrt{6}}{3}+1
To add or subtract expressions, expand them to make their denominators the same. Multiply -5-2\sqrt{6} times \frac{3^{3}}{3^{3}}.
\frac{\left(3+\sqrt{6}\right)^{3}+\left(-5-2\sqrt{6}\right)\times 3^{3}}{3^{3}}+\frac{3\sqrt{6}}{3}+1
Since \frac{\left(3+\sqrt{6}\right)^{3}}{3^{3}} and \frac{\left(-5-2\sqrt{6}\right)\times 3^{3}}{3^{3}} have the same denominator, add them by adding their numerators.
\frac{3^{3}+3\times 3^{2}\sqrt{6}+3\times 3\left(\sqrt{6}\right)^{2}+\left(\sqrt{6}\right)^{3}-135-54\sqrt{6}}{3^{3}}+\frac{3\sqrt{6}}{3}+1
Do the multiplications in \left(3+\sqrt{6}\right)^{3}+\left(-5-2\sqrt{6}\right)\times 3^{3}.
\frac{-54-21\sqrt{6}}{3^{3}}+\frac{3\sqrt{6}}{3}+1
Do the calculations in 3^{3}+3\times 3^{2}\sqrt{6}+3\times 3\left(\sqrt{6}\right)^{2}+\left(\sqrt{6}\right)^{3}-135-54\sqrt{6}.
\frac{-54-21\sqrt{6}}{3^{3}}+\sqrt{6}+1
Cancel out 3 and 3.
\frac{-54-21\sqrt{6}}{3^{3}}+\frac{\left(\sqrt{6}+1\right)\times 3^{3}}{3^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6}+1 times \frac{3^{3}}{3^{3}}.
\frac{-54-21\sqrt{6}+\left(\sqrt{6}+1\right)\times 3^{3}}{3^{3}}
Since \frac{-54-21\sqrt{6}}{3^{3}} and \frac{\left(\sqrt{6}+1\right)\times 3^{3}}{3^{3}} have the same denominator, add them by adding their numerators.
\frac{-54-21\sqrt{6}+27\sqrt{6}+27}{3^{3}}
Do the multiplications in -54-21\sqrt{6}+\left(\sqrt{6}+1\right)\times 3^{3}.
\frac{-27+6\sqrt{6}}{3^{3}}
Do the calculations in -54-21\sqrt{6}+27\sqrt{6}+27.
\frac{-27+6\sqrt{6}}{27}
Expand 3^{3}.