Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\sqrt{15}-\sqrt{3}}{\sqrt{5}-1}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{3+\sqrt{6}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
\left(\frac{\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{15}-\sqrt{3}}{\sqrt{5}-1}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}+\frac{\sqrt{15}-\sqrt{3}}{\sqrt{5}-1}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Square \sqrt{2}. Square \sqrt{3}.
\left(\frac{\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}+\frac{\sqrt{15}-\sqrt{3}}{\sqrt{5}-1}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Subtract 3 from 2 to get -1.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\sqrt{15}-\sqrt{3}}{\sqrt{5}-1}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Anything divided by -1 gives its opposite.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{\sqrt{15}-\sqrt{3}}{\sqrt{5}-1} by multiplying numerator and denominator by \sqrt{5}+1.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}\right)^{2}-1^{2}}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Consider \left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{5-1}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Square \sqrt{5}. Square 1.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-\sqrt{27}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Subtract 1 from 5 to get 4.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(2+\sqrt{3}\right)^{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(4+4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
\left(-\left(3+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Add 4 and 3 to get 7.
\left(-\left(3\sqrt{2}-3\sqrt{3}+\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Use the distributive property to multiply 3+\sqrt{6} by \sqrt{2}-\sqrt{3}.
\left(-\left(3\sqrt{2}-3\sqrt{3}+\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\left(-\left(3\sqrt{2}-3\sqrt{3}+2\sqrt{3}-\sqrt{6}\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\left(-\left(3\sqrt{2}-\sqrt{3}-\sqrt{6}\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Combine -3\sqrt{3} and 2\sqrt{3} to get -\sqrt{3}.
\left(-\left(3\sqrt{2}-\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\left(-\left(3\sqrt{2}-\sqrt{3}-3\sqrt{2}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(-\left(-\sqrt{3}\right)+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Combine 3\sqrt{2} and -3\sqrt{2} to get 0.
\left(\sqrt{3}+\frac{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
The opposite of -\sqrt{3} is \sqrt{3}.
\left(\sqrt{3}+\frac{\sqrt{15}\sqrt{5}+\sqrt{15}-\sqrt{3}\sqrt{5}-\sqrt{3}}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Use the distributive property to multiply \sqrt{15}-\sqrt{3} by \sqrt{5}+1.
\left(\sqrt{3}+\frac{\sqrt{5}\sqrt{3}\sqrt{5}+\sqrt{15}-\sqrt{3}\sqrt{5}-\sqrt{3}}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\left(\sqrt{3}+\frac{5\sqrt{3}+\sqrt{15}-\sqrt{3}\sqrt{5}-\sqrt{3}}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Multiply \sqrt{5} and \sqrt{5} to get 5.
\left(\sqrt{3}+\frac{5\sqrt{3}+\sqrt{15}-\sqrt{15}-\sqrt{3}}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\left(\sqrt{3}+\frac{5\sqrt{3}-\sqrt{3}}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Combine \sqrt{15} and -\sqrt{15} to get 0.
\left(\sqrt{3}+\frac{4\sqrt{3}}{4}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Combine 5\sqrt{3} and -\sqrt{3} to get 4\sqrt{3}.
\left(\sqrt{3}+\sqrt{3}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Cancel out 4 and 4.
\left(2\sqrt{3}-3\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
\left(-\sqrt{3}+2\right)^{2}\left(7+4\sqrt{3}\right)
Combine 2\sqrt{3} and -3\sqrt{3} to get -\sqrt{3}.
\left(\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4\right)\left(7+4\sqrt{3}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\sqrt{3}+2\right)^{2}.
\left(3-4\sqrt{3}+4\right)\left(7+4\sqrt{3}\right)
The square of \sqrt{3} is 3.
\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)
Add 3 and 4 to get 7.
49-\left(4\sqrt{3}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
49-4^{2}\left(\sqrt{3}\right)^{2}
Expand \left(4\sqrt{3}\right)^{2}.
49-16\left(\sqrt{3}\right)^{2}
Calculate 4 to the power of 2 and get 16.
49-16\times 3
The square of \sqrt{3} is 3.
49-48
Multiply 16 and 3 to get 48.
1
Subtract 48 from 49 to get 1.