Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{27b^{2}a^{5}}{14a^{-2}}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
Cancel out b in both numerator and denominator.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3}{7b^{2}a^{4}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27b^{2}a^{7}}{14}\times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}}
To raise \frac{3}{7b^{2}a^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{27b^{2}a^{7}\times 3^{-3}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply \frac{27b^{2}a^{7}}{14} times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}} by multiplying numerator times numerator and denominator times denominator.
\frac{27b^{2}a^{7}\times \frac{1}{27}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{b^{2}a^{7}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply 27 and \frac{1}{27} to get 1.
\frac{b^{2}a^{7}}{14\times 7^{-3}\left(b^{2}\right)^{-3}\left(a^{4}\right)^{-3}}
Expand \left(7b^{2}a^{4}\right)^{-3}.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}\left(a^{4}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{b^{2}a^{7}}{14\times \frac{1}{343}b^{-6}a^{-12}}
Calculate 7 to the power of -3 and get \frac{1}{343}.
\frac{b^{2}a^{7}}{\frac{2}{49}b^{-6}a^{-12}}
Multiply 14 and \frac{1}{343} to get \frac{2}{49}.
\frac{b^{8}a^{19}}{\frac{2}{49}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{b^{8}a^{19}\times 49}{2}
Divide b^{8}a^{19} by \frac{2}{49} by multiplying b^{8}a^{19} by the reciprocal of \frac{2}{49}.
\frac{27b^{2}a^{5}}{14a^{-2}}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
Cancel out b in both numerator and denominator.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3}{7b^{2}a^{4}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27b^{2}a^{7}}{14}\times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}}
To raise \frac{3}{7b^{2}a^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{27b^{2}a^{7}\times 3^{-3}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply \frac{27b^{2}a^{7}}{14} times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}} by multiplying numerator times numerator and denominator times denominator.
\frac{27b^{2}a^{7}\times \frac{1}{27}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{b^{2}a^{7}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply 27 and \frac{1}{27} to get 1.
\frac{b^{2}a^{7}}{14\times 7^{-3}\left(b^{2}\right)^{-3}\left(a^{4}\right)^{-3}}
Expand \left(7b^{2}a^{4}\right)^{-3}.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}\left(a^{4}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{b^{2}a^{7}}{14\times \frac{1}{343}b^{-6}a^{-12}}
Calculate 7 to the power of -3 and get \frac{1}{343}.
\frac{b^{2}a^{7}}{\frac{2}{49}b^{-6}a^{-12}}
Multiply 14 and \frac{1}{343} to get \frac{2}{49}.
\frac{b^{8}a^{19}}{\frac{2}{49}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{b^{8}a^{19}\times 49}{2}
Divide b^{8}a^{19} by \frac{2}{49} by multiplying b^{8}a^{19} by the reciprocal of \frac{2}{49}.