Evaluate
\frac{49b^{8}a^{19}}{2}
Expand
\frac{49b^{8}a^{19}}{2}
Share
Copied to clipboard
\frac{27b^{2}a^{5}}{14a^{-2}}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
Cancel out b in both numerator and denominator.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3}{7b^{2}a^{4}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27b^{2}a^{7}}{14}\times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}}
To raise \frac{3}{7b^{2}a^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{27b^{2}a^{7}\times 3^{-3}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply \frac{27b^{2}a^{7}}{14} times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}} by multiplying numerator times numerator and denominator times denominator.
\frac{27b^{2}a^{7}\times \frac{1}{27}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{b^{2}a^{7}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply 27 and \frac{1}{27} to get 1.
\frac{b^{2}a^{7}}{14\times 7^{-3}\left(b^{2}\right)^{-3}\left(a^{4}\right)^{-3}}
Expand \left(7b^{2}a^{4}\right)^{-3}.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}\left(a^{4}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{b^{2}a^{7}}{14\times \frac{1}{343}b^{-6}a^{-12}}
Calculate 7 to the power of -3 and get \frac{1}{343}.
\frac{b^{2}a^{7}}{\frac{2}{49}b^{-6}a^{-12}}
Multiply 14 and \frac{1}{343} to get \frac{2}{49}.
\frac{b^{8}a^{19}}{\frac{2}{49}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{b^{8}a^{19}\times 49}{2}
Divide b^{8}a^{19} by \frac{2}{49} by multiplying b^{8}a^{19} by the reciprocal of \frac{2}{49}.
\frac{27b^{2}a^{5}}{14a^{-2}}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
Cancel out b in both numerator and denominator.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3a^{-5}b^{0}}{7b^{2}a^{-1}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{27b^{2}a^{7}}{14}\times \left(\frac{3}{7b^{2}a^{4}}\right)^{-3}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27b^{2}a^{7}}{14}\times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}}
To raise \frac{3}{7b^{2}a^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{27b^{2}a^{7}\times 3^{-3}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply \frac{27b^{2}a^{7}}{14} times \frac{3^{-3}}{\left(7b^{2}a^{4}\right)^{-3}} by multiplying numerator times numerator and denominator times denominator.
\frac{27b^{2}a^{7}\times \frac{1}{27}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{b^{2}a^{7}}{14\times \left(7b^{2}a^{4}\right)^{-3}}
Multiply 27 and \frac{1}{27} to get 1.
\frac{b^{2}a^{7}}{14\times 7^{-3}\left(b^{2}\right)^{-3}\left(a^{4}\right)^{-3}}
Expand \left(7b^{2}a^{4}\right)^{-3}.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}\left(a^{4}\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{b^{2}a^{7}}{14\times 7^{-3}b^{-6}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{b^{2}a^{7}}{14\times \frac{1}{343}b^{-6}a^{-12}}
Calculate 7 to the power of -3 and get \frac{1}{343}.
\frac{b^{2}a^{7}}{\frac{2}{49}b^{-6}a^{-12}}
Multiply 14 and \frac{1}{343} to get \frac{2}{49}.
\frac{b^{8}a^{19}}{\frac{2}{49}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{b^{8}a^{19}\times 49}{2}
Divide b^{8}a^{19} by \frac{2}{49} by multiplying b^{8}a^{19} by the reciprocal of \frac{2}{49}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}