Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. R
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(27R^{15}\right)^{-\frac{1}{3}}}{\left(8s^{6}\right)^{-\frac{1}{3}}}
To raise \frac{27R^{15}}{8s^{6}} to a power, raise both numerator and denominator to the power and then divide.
\frac{27^{-\frac{1}{3}}\left(R^{15}\right)^{-\frac{1}{3}}}{\left(8s^{6}\right)^{-\frac{1}{3}}}
Expand \left(27R^{15}\right)^{-\frac{1}{3}}.
\frac{27^{-\frac{1}{3}}R^{-5}}{\left(8s^{6}\right)^{-\frac{1}{3}}}
To raise a power to another power, multiply the exponents. Multiply 15 and -\frac{1}{3} to get -5.
\frac{\frac{1}{3}R^{-5}}{\left(8s^{6}\right)^{-\frac{1}{3}}}
Calculate 27 to the power of -\frac{1}{3} and get \frac{1}{3}.
\frac{\frac{1}{3}R^{-5}}{8^{-\frac{1}{3}}\left(s^{6}\right)^{-\frac{1}{3}}}
Expand \left(8s^{6}\right)^{-\frac{1}{3}}.
\frac{\frac{1}{3}R^{-5}}{8^{-\frac{1}{3}}s^{-2}}
To raise a power to another power, multiply the exponents. Multiply 6 and -\frac{1}{3} to get -2.
\frac{\frac{1}{3}R^{-5}}{\frac{1}{2}s^{-2}}
Calculate 8 to the power of -\frac{1}{3} and get \frac{1}{2}.