Solve for p
p=-11\log_{2}\left(5\right)+6\approx -19.541209044
Share
Copied to clipboard
\frac{64}{125}=2^{p}\times 5^{8}
Calculate \frac{25}{16} to the power of -\frac{3}{2} and get \frac{64}{125}.
\frac{64}{125}=2^{p}\times 390625
Calculate 5 to the power of 8 and get 390625.
2^{p}\times 390625=\frac{64}{125}
Swap sides so that all variable terms are on the left hand side.
2^{p}=\frac{\frac{64}{125}}{390625}
Divide both sides by 390625.
2^{p}=\frac{64}{125\times 390625}
Express \frac{\frac{64}{125}}{390625} as a single fraction.
2^{p}=\frac{64}{48828125}
Multiply 125 and 390625 to get 48828125.
\log(2^{p})=\log(\frac{64}{48828125})
Take the logarithm of both sides of the equation.
p\log(2)=\log(\frac{64}{48828125})
The logarithm of a number raised to a power is the power times the logarithm of the number.
p=\frac{\log(\frac{64}{48828125})}{\log(2)}
Divide both sides by \log(2).
p=\log_{2}\left(\frac{64}{48828125}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}