Evaluate
\frac{1093}{52}\approx 21.019230769
Factor
\frac{1093}{2 ^ {2} \cdot 13} = 21\frac{1}{52} = 21.01923076923077
Share
Copied to clipboard
\frac{\left(25\sqrt{13}\right)^{2}}{26^{2}}+9
To raise \frac{25\sqrt{13}}{26} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(25\sqrt{13}\right)^{2}}{26^{2}}+\frac{9\times 26^{2}}{26^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{26^{2}}{26^{2}}.
\frac{\left(25\sqrt{13}\right)^{2}+9\times 26^{2}}{26^{2}}
Since \frac{\left(25\sqrt{13}\right)^{2}}{26^{2}} and \frac{9\times 26^{2}}{26^{2}} have the same denominator, add them by adding their numerators.
\frac{25^{2}\left(\sqrt{13}\right)^{2}}{26^{2}}+9
Expand \left(25\sqrt{13}\right)^{2}.
\frac{625\left(\sqrt{13}\right)^{2}}{26^{2}}+9
Calculate 25 to the power of 2 and get 625.
\frac{625\times 13}{26^{2}}+9
The square of \sqrt{13} is 13.
\frac{8125}{26^{2}}+9
Multiply 625 and 13 to get 8125.
\frac{8125}{676}+9
Calculate 26 to the power of 2 and get 676.
\frac{625}{52}+9
Reduce the fraction \frac{8125}{676} to lowest terms by extracting and canceling out 13.
\frac{1093}{52}
Add \frac{625}{52} and 9 to get \frac{1093}{52}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}