Evaluate
\frac{1}{6x^{3}y^{4}}
Expand
\frac{1}{6x^{3}y^{4}}
Quiz
Algebra
( \frac { 2 x } { 3 y ^ { 2 } } ) ^ { 3 } \div ( \frac { 4 x ^ { 3 } } { 3 y } ) ^ { 2 } =
Share
Copied to clipboard
\frac{\frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}}}{\left(\frac{4x^{3}}{3y}\right)^{2}}
To raise \frac{2x}{3y^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}}}{\frac{\left(4x^{3}\right)^{2}}{\left(3y\right)^{2}}}
To raise \frac{4x^{3}}{3y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x\right)^{3}\times \left(3y\right)^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Divide \frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}} by \frac{\left(4x^{3}\right)^{2}}{\left(3y\right)^{2}} by multiplying \frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}} by the reciprocal of \frac{\left(4x^{3}\right)^{2}}{\left(3y\right)^{2}}.
\frac{2^{3}x^{3}\times \left(3y\right)^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Expand \left(2x\right)^{3}.
\frac{8x^{3}\times \left(3y\right)^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Calculate 2 to the power of 3 and get 8.
\frac{8x^{3}\times 3^{2}y^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Expand \left(3y\right)^{2}.
\frac{8x^{3}\times 9y^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{72x^{3}y^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Multiply 8 and 9 to get 72.
\frac{72x^{3}y^{2}}{3^{3}\left(y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Expand \left(3y^{2}\right)^{3}.
\frac{72x^{3}y^{2}}{3^{3}y^{6}\times \left(4x^{3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{72x^{3}y^{2}}{27y^{6}\times \left(4x^{3}\right)^{2}}
Calculate 3 to the power of 3 and get 27.
\frac{72x^{3}y^{2}}{27y^{6}\times 4^{2}\left(x^{3}\right)^{2}}
Expand \left(4x^{3}\right)^{2}.
\frac{72x^{3}y^{2}}{27y^{6}\times 4^{2}x^{6}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{72x^{3}y^{2}}{27y^{6}\times 16x^{6}}
Calculate 4 to the power of 2 and get 16.
\frac{72x^{3}y^{2}}{432y^{6}x^{6}}
Multiply 27 and 16 to get 432.
\frac{1}{6x^{3}y^{4}}
Cancel out 72y^{2}x^{3} in both numerator and denominator.
\frac{\frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}}}{\left(\frac{4x^{3}}{3y}\right)^{2}}
To raise \frac{2x}{3y^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}}}{\frac{\left(4x^{3}\right)^{2}}{\left(3y\right)^{2}}}
To raise \frac{4x^{3}}{3y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x\right)^{3}\times \left(3y\right)^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Divide \frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}} by \frac{\left(4x^{3}\right)^{2}}{\left(3y\right)^{2}} by multiplying \frac{\left(2x\right)^{3}}{\left(3y^{2}\right)^{3}} by the reciprocal of \frac{\left(4x^{3}\right)^{2}}{\left(3y\right)^{2}}.
\frac{2^{3}x^{3}\times \left(3y\right)^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Expand \left(2x\right)^{3}.
\frac{8x^{3}\times \left(3y\right)^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Calculate 2 to the power of 3 and get 8.
\frac{8x^{3}\times 3^{2}y^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Expand \left(3y\right)^{2}.
\frac{8x^{3}\times 9y^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{72x^{3}y^{2}}{\left(3y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Multiply 8 and 9 to get 72.
\frac{72x^{3}y^{2}}{3^{3}\left(y^{2}\right)^{3}\times \left(4x^{3}\right)^{2}}
Expand \left(3y^{2}\right)^{3}.
\frac{72x^{3}y^{2}}{3^{3}y^{6}\times \left(4x^{3}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{72x^{3}y^{2}}{27y^{6}\times \left(4x^{3}\right)^{2}}
Calculate 3 to the power of 3 and get 27.
\frac{72x^{3}y^{2}}{27y^{6}\times 4^{2}\left(x^{3}\right)^{2}}
Expand \left(4x^{3}\right)^{2}.
\frac{72x^{3}y^{2}}{27y^{6}\times 4^{2}x^{6}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{72x^{3}y^{2}}{27y^{6}\times 16x^{6}}
Calculate 4 to the power of 2 and get 16.
\frac{72x^{3}y^{2}}{432y^{6}x^{6}}
Multiply 27 and 16 to get 432.
\frac{1}{6x^{3}y^{4}}
Cancel out 72y^{2}x^{3} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}